Cargando…
Neural encoding of instantaneous kinematics of eye-head gaze shifts in monkey superior Colliculus
The midbrain superior colliculus is a crucial sensorimotor stage for programming and generating saccadic eye-head gaze shifts. Although it is well established that superior colliculus cells encode a neural command that specifies the amplitude and direction of the upcoming gaze-shift vector, there is...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492853/ https://www.ncbi.nlm.nih.gov/pubmed/37689726 http://dx.doi.org/10.1038/s42003-023-05305-z |
Sumario: | The midbrain superior colliculus is a crucial sensorimotor stage for programming and generating saccadic eye-head gaze shifts. Although it is well established that superior colliculus cells encode a neural command that specifies the amplitude and direction of the upcoming gaze-shift vector, there is controversy about the role of the firing-rate dynamics of these neurons during saccades. In our earlier work, we proposed a simple quantitative model that explains how the recruited superior colliculus population may specify the detailed kinematics (trajectories and velocity profiles) of head-restrained saccadic eye movements. We here show that the same principles may apply to a wide range of saccadic eye-head gaze shifts with strongly varying kinematics, despite the substantial nonlinearities and redundancy in programming and execute rapid goal-directed eye-head gaze shifts to peripheral targets. Our findings could provide additional evidence for an important role of the superior colliculus in the optimal control of saccades. |
---|