Cargando…
Explainable Machine Learning to Predict Anchored Reentry Substrate Created by Persistent Atrial Fibrillation Ablation in Computational Models
BACKGROUND: Postablation arrhythmia recurrence occurs in ~40% of patients with persistent atrial fibrillation. Fibrotic remodeling exacerbates arrhythmic activity in persistent atrial fibrillation and can play a key role in reentrant arrhythmia, but emergent interaction between nonconductive ablatio...
Autores principales: | Bifulco, Savannah F., Macheret, Fima, Scott, Griffin D., Akoum, Nazem, Boyle, Patrick M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492949/ https://www.ncbi.nlm.nih.gov/pubmed/37581387 http://dx.doi.org/10.1161/JAHA.123.030500 |
Ejemplares similares
-
MRI-quantified left atrial epicardial adipose tissue predicts atrial fibrillation recurrence following catheter ablation
por: Chahine, Yaacoub, et al.
Publicado: (2022) -
Epicardial adipose tissue is associated with left atrial volume and fibrosis in patients with atrial fibrillation
por: Chahine, Yaacoub, et al.
Publicado: (2022) -
Substrate Modification Is a Better Predictor of Catheter Ablation Success in Atrial Fibrillation Than Pulmonary Vein Isolation: An LGE-MRI Study
por: Akoum, Nazem, et al.
Publicado: (2015) -
Atrial Fibrosis, Ischaemic Stroke and Atrial Fibrillation
por: Mahnkopf, Christian, et al.
Publicado: (2021) -
Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate
por: Bifulco, Savannah F, et al.
Publicado: (2021)