Cargando…
Discrepancy between two invasive blood pressure measurements in patients receiving intra-aortic balloon pump therapy
BACKGROUND: Hemodynamic monitoring is imperative for patients with cardiogenic shock undergoing Intra-aortic Balloon Pump (IABP) therapy. Blood pressure monitoring encompasses non-invasive, invasive peripheral arterial pressure (IPAP), and invasive central aortic pressure (ICAP) methods. However, ma...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493012/ https://www.ncbi.nlm.nih.gov/pubmed/37689650 http://dx.doi.org/10.1186/s12872-023-03479-2 |
Sumario: | BACKGROUND: Hemodynamic monitoring is imperative for patients with cardiogenic shock undergoing Intra-aortic Balloon Pump (IABP) therapy. Blood pressure monitoring encompasses non-invasive, invasive peripheral arterial pressure (IPAP), and invasive central aortic pressure (ICAP) methods. However, marked disparities exist between IPAP and ICAP. This study examined the discrepancies between IPAP and ICAP and their clinical significance. METHODS: A retrospective analysis was conducted on cardiogenic shock patients who underwent IABP therapy and were admitted to the Coronary Care Unit (CCU) of a tertiary hospital in China from March 2017 to November 2022. The Bland–Altman plot illustrated the discrepancy between IPAP and ICAP. A clinically significant difference between ICAP and IPAP measurements was defined as ≥ 10 mmHg, which could necessitate alterations in blood pressure management according to current guidelines that recommend maintaining a mean arterial pressure (MAP) ≥ 70 mmHg. RESULTS: In total, 162 patients were included in the final analysis. In patients without vasopressors, the difference between ICAP and IPAP was 5.73 mmHg (95% limits of agreement [LOA], -16.98 to 28.44), whereas, in patients with vasopressors, it was 4.36 mmHg (95% LOA, -17.31 to 26.03). ICAP measurements exceeded IPAP in patients undergoing IABP therapy. However, the difference was not statistically significant between the two groups. Multivariate logistic regression revealed that higher serum lactate levels (Odds ratio [OR], 1.14; 95% confidence interval [CI], 1.03–1.27; p = 0.013) and age ≥ 60 years (OR, 13.20; 95% CI, 1.50–115.51; p = 0.020) were associated with an increased likelihood of a clinically significant MAP discrepancy. Conversely, a history of coronary heart disease was associated with a decreased likelihood (OR, 0.34; 95% CI, 0.13–0.90; p = 0.031). CONCLUSIONS: Notable discrepancies between ICAP and IPAP measurements exist in cardiogenic shock patients undergoing IABP therapy. ICAP exceeds IPAP, and factors such as age ≥ 60 years, elevated lactic acid levels, and absence of coronary heart disease contribute to this discrepancy. Enhanced vigilance is warranted for these patients, and the consideration of peripheral invasive monitoring in conjunction with IABP therapy is advised. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-023-03479-2. |
---|