Cargando…
A Retrospective Cohort Study: Predicting 90-Day Mortality for ICU Trauma Patients with a Machine Learning Algorithm Using XGBoost Using MIMIC-III Database
OBJECTIVE: The aim of this study was to develop and validate a machine learning-based predictive model that predicts 90-day mortality in ICU trauma patients. METHODS: Data of patients with severe trauma were extracted from the Medical Information Mart for Intensive Care III (MIMIC-III) database. The...
Autores principales: | Yang, Shan, Cao, Lirui, Zhou, Yongfang, Hu, Chenggong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493110/ https://www.ncbi.nlm.nih.gov/pubmed/37701177 http://dx.doi.org/10.2147/JMDH.S416943 |
Ejemplares similares
-
Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost
por: Hou, Nianzong, et al.
Publicado: (2020) -
Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database
por: Pang, Ke, et al.
Publicado: (2022) -
Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients
por: Montomoli, Jonathan, et al.
Publicado: (2021) -
Association between platelet-lymphocyte ratio and 90-day mortality in patients with intracerebral hemorrhage: data from the MIMIC-III database
por: Yuan, Min, et al.
Publicado: (2023) -
Predicting risk for trauma patients using static and dynamic information from the MIMIC III database
por: Tsiklidis, Evan J., et al.
Publicado: (2022)