Cargando…

The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives

Artificial intelligence (AI) and machine learning (ML) represent significant advancements in computing, building on technologies that humanity has developed over millions of years—from the abacus to quantum computers. These tools have reached a pivotal moment in their development. In 2021 alone, the...

Descripción completa

Detalles Bibliográficos
Autor principal: Niazi, Sarfaraz K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493153/
https://www.ncbi.nlm.nih.gov/pubmed/37701048
http://dx.doi.org/10.2147/DDDT.S424991
Descripción
Sumario:Artificial intelligence (AI) and machine learning (ML) represent significant advancements in computing, building on technologies that humanity has developed over millions of years—from the abacus to quantum computers. These tools have reached a pivotal moment in their development. In 2021 alone, the U.S. Food and Drug Administration (FDA) received over 100 product registration submissions that heavily relied on AI/ML for applications such as monitoring and improving human performance in compiling dossiers. To ensure the safe and effective use of AI/ML in drug discovery and manufacturing, the FDA and numerous other U.S. federal agencies have issued continuously updated, stringent guidelines. Intriguingly, these guidelines are often generated or updated with the aid of AI/ML tools themselves. The overarching goal is to expedite drug discovery, enhance the safety profiles of existing drugs, introduce novel treatment modalities, and improve manufacturing compliance and robustness. Recent FDA publications offer an encouraging outlook on the potential of these tools, emphasizing the need for their careful deployment. This has expanded market opportunities for retraining personnel handling these technologies and enabled innovative applications in emerging therapies such as gene editing, CRISPR-Cas9, CAR-T cells, mRNA-based treatments, and personalized medicine. In summary, the maturation of AI/ML technologies is a testament to human ingenuity. Far from being autonomous entities, these are tools created by and for humans designed to solve complex problems now and in the future. This paper aims to present the status of these technologies, along with examples of their present and future applications.