Cargando…
Temporal-frequency-phase feature classification using 3D-convolutional neural networks for motor imagery and movement
Recently, convolutional neural networks (CNNs) have been widely applied in brain-computer interface (BCI) based on electroencephalogram (EEG) signals. Due to the subject-specific nature of EEG signal patterns and the multi-dimensionality of EEG features, it is necessary to employ appropriate feature...
Autores principales: | Fan, Chengcheng, Yang, Banghua, Li, Xiaoou, Zan, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493321/ https://www.ncbi.nlm.nih.gov/pubmed/37700746 http://dx.doi.org/10.3389/fnins.2023.1250991 |
Ejemplares similares
-
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
por: Xiao, Xiongliang, et al.
Publicado: (2021)