Cargando…
hERG-toxicity prediction using traditional machine learning and advanced deep learning techniques
The rise of artificial intelligence (AI) based algorithms has gained a lot of interest in the pharmaceutical development field. Our study demonstrates utilization of traditional machine learning techniques such as random forest (RF), support-vector machine (SVM), extreme gradient boosting (XGBoost),...
Autores principales: | Ylipää, Erik, Chavan, Swapnil, Bånkestad, Maria, Broberg, Johan, Glinghammar, Björn, Norinder, Ulf, Cotgreave, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493507/ https://www.ncbi.nlm.nih.gov/pubmed/37701072 http://dx.doi.org/10.1016/j.crtox.2023.100121 |
Ejemplares similares
-
Traditional Machine and Deep Learning for Predicting Toxicity Endpoints
por: Norinder, Ulf
Publicado: (2022) -
A k-nearest neighbor classification of hERG K(+) channel blockers
por: Chavan, Swapnil, et al.
Publicado: (2016) -
The electric heart of hERG
por: Islas, León D.
Publicado: (2013) -
An Update on the Structure of hERG
por: Butler, Andrew, et al.
Publicado: (2020) -
Improving the hERG model fitting using a deep learning-based method
por: Song, Jaekyung, et al.
Publicado: (2023)