Cargando…
Machine learning for prediction of delirium in patients with extensive burns after surgery
AIMS: Machine learning‐based identification of key variables and prediction of postoperative delirium in patients with extensive burns. METHODS: Five hundred and eighteen patients with extensive burns who underwent surgery were included and randomly divided into a training set, a validation set, and...
Autores principales: | Ren, Yujie, Zhang, Yu, Zhan, Jianhua, Sun, Junfeng, Luo, Jinhua, Liao, Wenqiang, Cheng, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10493655/ https://www.ncbi.nlm.nih.gov/pubmed/37122154 http://dx.doi.org/10.1111/cns.14237 |
Ejemplares similares
-
Research progress on risk factors of delirium in burn patients: A narrative review
por: Ren, Yujie, et al.
Publicado: (2022) -
Machine learning-based prediction model for postoperative delirium in non-cardiac surgery
por: Lee, Dong Yun, et al.
Publicado: (2023) -
Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models
por: Park, Ji Hyun, et al.
Publicado: (2022) -
Machine learning approach for predicting inhalation injury in patients with burns
por: Yang, Shih-Yi, et al.
Publicado: (2023) -
Automated machine learning‐based model for the prediction of delirium in patients after surgery for degenerative spinal disease
por: Zhang, Yu, et al.
Publicado: (2022)