Cargando…
75% radiation dose reduction using deep learning reconstruction on low-dose chest CT
OBJECTIVE: Few studies have explored the clinical feasibility of using deep-learning reconstruction to reduce the radiation dose of CT. We aimed to compare the image quality and lung nodule detectability between chest CT using a quarter of the low dose (QLD) reconstructed with vendor-agnostic deep-l...
Autores principales: | Jo, Gyeong Deok, Ahn, Chulkyun, Hong, Jung Hee, Kim, Da Som, Park, Jongsoo, Kim, Hyungjin, Kim, Jong Hyo, Goo, Jin Mo, Nam, Ju Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494344/ https://www.ncbi.nlm.nih.gov/pubmed/37697262 http://dx.doi.org/10.1186/s12880-023-01081-8 |
Ejemplares similares
-
Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning–based image reconstruction algorithm on CT: a phantom study
por: Choi, Hyunsu, et al.
Publicado: (2021) -
Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT
por: Yeoh, Hyunjung, et al.
Publicado: (2021) -
Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction
por: Hong, Jung Hee, et al.
Publicado: (2020) -
Fully automated image quality evaluation on patient CT: Multi-vendor and multi-reconstruction study
por: Chun, Minsoo, et al.
Publicado: (2022) -
Feasibility of low dose chest CT for virtual bronchoscopy navigation in a porcine model
por: Kim, Insu, et al.
Publicado: (2019)