Cargando…
SeriesSleepNet: an EEG time series model with partial data augmentation for automatic sleep stage scoring
Introduction: We propose an automatic sleep stage scoring model, referred to as SeriesSleepNet, based on convolutional neural network (CNN) and bidirectional long short-term memory (bi-LSTM) with partial data augmentation. We used single-channel raw electroencephalography signals for automatic sleep...
Autores principales: | Lee, Minji, Kwak, Heon-Gyu, Kim, Hyeong-Jin, Won, Dong-Ok, Lee, Seong-Whan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494443/ https://www.ncbi.nlm.nih.gov/pubmed/37700762 http://dx.doi.org/10.3389/fphys.2023.1188678 |
Ejemplares similares
-
Automatic Sleep Monitoring Using Ear-EEG
Publicado: (2017) -
Automatic sleep staging using ear-EEG
por: Mikkelsen, Kaare B., et al.
Publicado: (2017) -
CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG
por: Li, Tingting, et al.
Publicado: (2022) -
Connectivity differences between consciousness and unconsciousness in non-rapid eye movement sleep: a TMS–EEG study
por: Lee, Minji, et al.
Publicado: (2019) -
Partial sleep in the context of augmentation of brain function
por: Pigarev, Ivan N., et al.
Publicado: (2014)