Cargando…
Long-chain dicarboxylic acids play a critical role in inducing peroxisomal β-oxidation and hepatic triacylglycerol accumulation
Recent studies provide evidence that peroxisomal β-oxidation negatively regulates mitochondrial fatty acid oxidation, and induction of peroxisomal β-oxidation causes hepatic lipid accumulation. However, whether there exists a triggering mechanism inducing peroxisomal β-oxidation is not clear. Long-c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494467/ https://www.ncbi.nlm.nih.gov/pubmed/37599002 http://dx.doi.org/10.1016/j.jbc.2023.105174 |
Sumario: | Recent studies provide evidence that peroxisomal β-oxidation negatively regulates mitochondrial fatty acid oxidation, and induction of peroxisomal β-oxidation causes hepatic lipid accumulation. However, whether there exists a triggering mechanism inducing peroxisomal β-oxidation is not clear. Long-chain dicarboxylic acids (LCDAs) are the product of mono fatty acids subjected to ω-oxidation, and both fatty acid ω-oxidation and peroxisomal β-oxidation are induced under ketogenic conditions, indicating there might be a crosstalk between. Here, we revealed that administration of LCDAs strongly induces peroxisomal fatty acid β-oxidation and causes hepatic steatosis in mice through the metabolites acetyl-CoA and hydrogen peroxide. Under ketogenic conditions, upregulation of fatty acid ω-oxidation resulted in increased generation of LCDAs and induction of peroxisomal β-oxidation, which causes hepatic accumulation of lipid droplets in animals. Inhibition of fatty acid ω-oxidation reduced LCDA formation and significantly lowered peroxisomal β-oxidation and improved hepatic steatosis. Our results suggest that endogenous LCDAs act as triggering molecules inducing peroxisomal β-oxidation and hepatic triacylglycerol deposition. Targeting fatty acid ω-oxidation might be an effective pathway in treating fatty liver and related metabolic diseases through regulating peroxisomal β-oxidation. |
---|