Cargando…

Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil

In Brazil, millions of people live in areas with risk of schistosomiasis, a neglected chronic disease with high morbidity. The Schistosoma mansoni helminth is present in all macroregions of Brazil, including the State of Minas Gerais, one of the most endemic states. For this reason, the identificati...

Descripción completa

Detalles Bibliográficos
Autores principales: Nogueira, Denismar Alves, Sáfadi, Thelma, de Lima, Renato Ribeiro, da Mata, Angélica Sousa, Graciano, Miriam Monteiro de Castro, Barçante, Joziana Muniz de Paiva, Barçante, Thales Augusto, Dourado, Stela Márcia Pereira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494687/
https://www.ncbi.nlm.nih.gov/pubmed/37377298
http://dx.doi.org/10.1590/0102-311XEN068822
_version_ 1785104749472776192
author Nogueira, Denismar Alves
Sáfadi, Thelma
de Lima, Renato Ribeiro
da Mata, Angélica Sousa
Graciano, Miriam Monteiro de Castro
Barçante, Joziana Muniz de Paiva
Barçante, Thales Augusto
Dourado, Stela Márcia Pereira
author_facet Nogueira, Denismar Alves
Sáfadi, Thelma
de Lima, Renato Ribeiro
da Mata, Angélica Sousa
Graciano, Miriam Monteiro de Castro
Barçante, Joziana Muniz de Paiva
Barçante, Thales Augusto
Dourado, Stela Márcia Pereira
author_sort Nogueira, Denismar Alves
collection PubMed
description In Brazil, millions of people live in areas with risk of schistosomiasis, a neglected chronic disease with high morbidity. The Schistosoma mansoni helminth is present in all macroregions of Brazil, including the State of Minas Gerais, one of the most endemic states. For this reason, the identification of potential foci is essential to support educational and prophylactic public policies to control this disease. This study aims to model schistosomiasis data based on spatial and temporal aspects and assess the importance of some exogenous socioeconomic variables and the presence of the main Biomphalaria species. Considering that, when working with incident cases, a discrete count variable requires an appropriate modeling, the GAMLSS modeling was chosen since it jointly considers a more appropriate distribution for the response variable due to zero inflation and spatial heteroscedasticity. Several municipalities presented high incidence values from 2010 to 2012, and a downward trend was observed until 2020. We also noticed that the distribution of incidence behaves differently in space and time. Municipalities with dams presented risk 2.25 times higher than municipalities without dams. The presence of B. glabrata was associated with the risk of schistosomiasis. On the other hand, the presence of B. straminea represented a lower risk of the disease. Thus, the control and monitoring of B. glabrata snails is essential to control and eliminate schistosomiasis; and the GAMLSS model was effective in the treatment and modeling of spatio-temporal data.
format Online
Article
Text
id pubmed-10494687
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
record_format MEDLINE/PubMed
spelling pubmed-104946872023-10-03 Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil Nogueira, Denismar Alves Sáfadi, Thelma de Lima, Renato Ribeiro da Mata, Angélica Sousa Graciano, Miriam Monteiro de Castro Barçante, Joziana Muniz de Paiva Barçante, Thales Augusto Dourado, Stela Márcia Pereira Cad Saude Publica Article In Brazil, millions of people live in areas with risk of schistosomiasis, a neglected chronic disease with high morbidity. The Schistosoma mansoni helminth is present in all macroregions of Brazil, including the State of Minas Gerais, one of the most endemic states. For this reason, the identification of potential foci is essential to support educational and prophylactic public policies to control this disease. This study aims to model schistosomiasis data based on spatial and temporal aspects and assess the importance of some exogenous socioeconomic variables and the presence of the main Biomphalaria species. Considering that, when working with incident cases, a discrete count variable requires an appropriate modeling, the GAMLSS modeling was chosen since it jointly considers a more appropriate distribution for the response variable due to zero inflation and spatial heteroscedasticity. Several municipalities presented high incidence values from 2010 to 2012, and a downward trend was observed until 2020. We also noticed that the distribution of incidence behaves differently in space and time. Municipalities with dams presented risk 2.25 times higher than municipalities without dams. The presence of B. glabrata was associated with the risk of schistosomiasis. On the other hand, the presence of B. straminea represented a lower risk of the disease. Thus, the control and monitoring of B. glabrata snails is essential to control and eliminate schistosomiasis; and the GAMLSS model was effective in the treatment and modeling of spatio-temporal data. Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz 2023-06-26 /pmc/articles/PMC10494687/ /pubmed/37377298 http://dx.doi.org/10.1590/0102-311XEN068822 Text en https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License
spellingShingle Article
Nogueira, Denismar Alves
Sáfadi, Thelma
de Lima, Renato Ribeiro
da Mata, Angélica Sousa
Graciano, Miriam Monteiro de Castro
Barçante, Joziana Muniz de Paiva
Barçante, Thales Augusto
Dourado, Stela Márcia Pereira
Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil
title Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil
title_full Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil
title_fullStr Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil
title_full_unstemmed Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil
title_short Spatio-temporal GAMLSS modeling of the incidence of schistosomiasis in the central region of the State of Minas Gerais, Brazil
title_sort spatio-temporal gamlss modeling of the incidence of schistosomiasis in the central region of the state of minas gerais, brazil
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494687/
https://www.ncbi.nlm.nih.gov/pubmed/37377298
http://dx.doi.org/10.1590/0102-311XEN068822
work_keys_str_mv AT nogueiradenismaralves spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT safadithelma spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT delimarenatoribeiro spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT damataangelicasousa spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT gracianomiriammonteirodecastro spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT barcantejozianamunizdepaiva spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT barcantethalesaugusto spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil
AT douradostelamarciapereira spatiotemporalgamlssmodelingoftheincidenceofschistosomiasisinthecentralregionofthestateofminasgeraisbrazil