Cargando…

Potential Implication of in ovo Feeding of Phytogenics in Poultry Production

Hatchery’s goals include maximizing revenue by achieving high hatchability with day-old birds of excellent quality. The advancement of technology has benefited the poultry sector since breeding and genetics technology have increased the rates of meat maturation in developing birds in a short period...

Descripción completa

Detalles Bibliográficos
Autores principales: Akosile, Oluwaseun Ayomide, Kehinde, Festus Olasehinde, Oni, Aderanti Ifeoluwa, Oke, Oyegunle Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494881/
https://www.ncbi.nlm.nih.gov/pubmed/37701128
http://dx.doi.org/10.1093/tas/txad094
Descripción
Sumario:Hatchery’s goals include maximizing revenue by achieving high hatchability with day-old birds of excellent quality. The advancement of technology has benefited the poultry sector since breeding and genetics technology have increased the rates of meat maturation in developing birds in a short period of time. Excessive use of in-feed antibiotics has been shown in studies to increase the chance of resistance to human infections. Bacterial resistance and antibiotic residues in animal products raised concerns about using antibiotics as growth promoters, eventually leading to a prohibition on using in-feed antibiotics in most industrialized nations. In ovo technology is a novel method for delivering bioactive chemicals to developing avian embryos. In ovo feeding technologies may provide additional nutrients to the embryos before hatching. The introduction of bioactive compounds has the potential to assist in decreasing and eventually eliminating the problems associated with traditional antibiotic delivery in chicken production. Phytobiotics were advocated as an alternative by researchers and dietitians. So far, several studies have been conducted on the use of phytogenic feed additives in poultry and swine feeding. They have primarily demonstrated that phytobiotics possess antibacterial, antioxidant, anti-inflammatory, and growth-stimulating properties. The antioxidant effect of phytobiotics can improve the stability of animal feed and increase the quality and storage duration of animal products. In general, the existing documentation indicates that phytobiotics improve poultry performance. To effectively and efficiently use the in ovo technique in poultry production and advance research in this area, it is important to have a thorough understanding of its potential as a means of nutrient delivery during the critical stage of incubation, its effects on hatching events and posthatch performance, and the challenges associated with its use. Overall, this review suggests that in ovo feeding of phytobiotics has the potential to improve the antioxidant status and performance of chickens.