Cargando…

A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses

A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downsc...

Descripción completa

Detalles Bibliográficos
Autores principales: Gebrechorkos, Solomon, Leyland, Julian, Slater, Louise, Wortmann, Michel, Ashworth, Philip J., Bennett, Georgina L., Boothroyd, Richard, Cloke, Hannah, Delorme, Pauline, Griffith, Helen, Hardy, Richard, Hawker, Laurence, McLelland, Stuart, Neal, Jeffrey, Nicholas, Andrew, Tatem, Andrew J., Vahidi, Ellie, Parsons, Daniel R., Darby, Stephen E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495318/
https://www.ncbi.nlm.nih.gov/pubmed/37696836
http://dx.doi.org/10.1038/s41597-023-02528-x
_version_ 1785104867139780608
author Gebrechorkos, Solomon
Leyland, Julian
Slater, Louise
Wortmann, Michel
Ashworth, Philip J.
Bennett, Georgina L.
Boothroyd, Richard
Cloke, Hannah
Delorme, Pauline
Griffith, Helen
Hardy, Richard
Hawker, Laurence
McLelland, Stuart
Neal, Jeffrey
Nicholas, Andrew
Tatem, Andrew J.
Vahidi, Ellie
Parsons, Daniel R.
Darby, Stephen E.
author_facet Gebrechorkos, Solomon
Leyland, Julian
Slater, Louise
Wortmann, Michel
Ashworth, Philip J.
Bennett, Georgina L.
Boothroyd, Richard
Cloke, Hannah
Delorme, Pauline
Griffith, Helen
Hardy, Richard
Hawker, Laurence
McLelland, Stuart
Neal, Jeffrey
Nicholas, Andrew
Tatem, Andrew J.
Vahidi, Ellie
Parsons, Daniel R.
Darby, Stephen E.
author_sort Gebrechorkos, Solomon
collection PubMed
description A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis (10.5285/c107618f1db34801bb88a1e927b82317) for the historical (1981–2014) and future (2015–2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.
format Online
Article
Text
id pubmed-10495318
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104953182023-09-13 A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses Gebrechorkos, Solomon Leyland, Julian Slater, Louise Wortmann, Michel Ashworth, Philip J. Bennett, Georgina L. Boothroyd, Richard Cloke, Hannah Delorme, Pauline Griffith, Helen Hardy, Richard Hawker, Laurence McLelland, Stuart Neal, Jeffrey Nicholas, Andrew Tatem, Andrew J. Vahidi, Ellie Parsons, Daniel R. Darby, Stephen E. Sci Data Data Descriptor A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis (10.5285/c107618f1db34801bb88a1e927b82317) for the historical (1981–2014) and future (2015–2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models. Nature Publishing Group UK 2023-09-11 /pmc/articles/PMC10495318/ /pubmed/37696836 http://dx.doi.org/10.1038/s41597-023-02528-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Gebrechorkos, Solomon
Leyland, Julian
Slater, Louise
Wortmann, Michel
Ashworth, Philip J.
Bennett, Georgina L.
Boothroyd, Richard
Cloke, Hannah
Delorme, Pauline
Griffith, Helen
Hardy, Richard
Hawker, Laurence
McLelland, Stuart
Neal, Jeffrey
Nicholas, Andrew
Tatem, Andrew J.
Vahidi, Ellie
Parsons, Daniel R.
Darby, Stephen E.
A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_full A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_fullStr A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_full_unstemmed A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_short A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_sort high-resolution daily global dataset of statistically downscaled cmip6 models for climate impact analyses
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495318/
https://www.ncbi.nlm.nih.gov/pubmed/37696836
http://dx.doi.org/10.1038/s41597-023-02528-x
work_keys_str_mv AT gebrechorkossolomon ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT leylandjulian ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT slaterlouise ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT wortmannmichel ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT ashworthphilipj ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT bennettgeorginal ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT boothroydrichard ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT clokehannah ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT delormepauline ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT griffithhelen ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT hardyrichard ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT hawkerlaurence ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT mclellandstuart ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT nealjeffrey ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT nicholasandrew ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT tatemandrewj ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT vahidiellie ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT parsonsdanielr ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT darbystephene ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT gebrechorkossolomon highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT leylandjulian highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT slaterlouise highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT wortmannmichel highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT ashworthphilipj highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT bennettgeorginal highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT boothroydrichard highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT clokehannah highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT delormepauline highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT griffithhelen highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT hardyrichard highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT hawkerlaurence highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT mclellandstuart highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT nealjeffrey highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT nicholasandrew highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT tatemandrewj highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT vahidiellie highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT parsonsdanielr highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT darbystephene highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses