Cargando…
Sugarcane nitrogen nutrition estimation with digital images and machine learning methods
The color and texture characteristics of crops can reflect their nitrogen (N) nutrient status and help optimize N fertilizer management. This study conducted a one-year field experiment to collect sugarcane leaf images at tillering and elongation stages using a commercial digital camera and extract...
Autores principales: | You, Hui, Zhou, Muchen, Zhang, Junxiang, Peng, Wei, Sun, Cuimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495321/ https://www.ncbi.nlm.nih.gov/pubmed/37697060 http://dx.doi.org/10.1038/s41598-023-42190-2 |
Ejemplares similares
-
Estimating canopy nitrogen concentration of sugarcane crop using in situ spectroscopy
por: Reyes-Trujillo, Aldemar, et al.
Publicado: (2021) -
SE-VisionTransformer: Hybrid Network for Diagnosing Sugarcane Leaf Diseases Based on Attention Mechanism
por: Sun, Cuimin, et al.
Publicado: (2023) -
Effects of sugarcane variety and nitrogen application level on the quality and aerobic stability of sugarcane tops silage
por: Gu, Qichao, et al.
Publicado: (2023) -
Data‐driven modeling based on kernel extreme learning machine for sugarcane juice clarification
por: Meng, Yanmei, et al.
Publicado: (2019) -
Nitrogen fixation in grasses - gluconacetobacter activates genes in sugarcane
por: Carvalho, Thais LG, et al.
Publicado: (2014)