Cargando…

Fluorescence microscope light source based on integrated LED

An LED-integrated excitation cube (LEC) was designed to address the limitations of conventional fluorescence lamps. The LEC has a decentralized structure, high optical power density, and efficient illumination. The optical efficiency of LECs is 1–2 orders of magnitude higher than that of mercury lam...

Descripción completa

Detalles Bibliográficos
Autores principales: Zi, Jianchen, Bi, Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495340/
https://www.ncbi.nlm.nih.gov/pubmed/37696803
http://dx.doi.org/10.1038/s41377-023-01245-9
Descripción
Sumario:An LED-integrated excitation cube (LEC) was designed to address the limitations of conventional fluorescence lamps. The LEC has a decentralized structure, high optical power density, and efficient illumination. The optical efficiency of LECs is 1–2 orders of magnitude higher than that of mercury lamps, enabling high-quality fluorescence imaging with spectral coverage from UV to red. LECs can be easily installed on commercial fluorescence microscopes by replacing conventional fluorescence filter cubes, and a built-in LEC driver can identify the types of LEDs in different spectral bands to adopt optimal operating conditions.