Cargando…
Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis
Necrotizing enterocolitis (NEC) continues to be a devastating disease in preterm neonates and has a paucity of medical management options. Chondroitin sulfate (CS) is a naturally occurring glycosaminoglycan (GAG) in human breast milk (HM) and has been shown to reduce inflammation. We hypothesized th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495347/ https://www.ncbi.nlm.nih.gov/pubmed/37697223 http://dx.doi.org/10.14814/phy2.15819 |
_version_ | 1785104873960767488 |
---|---|
author | Manohar, Krishna Hosfield, Brian D. Mesfin, Fikir M. Colgate, Cameron Shelley, William Christopher Liu, Jianyun Zeng, Lifan Brokaw, John P. Markel, Troy A. |
author_facet | Manohar, Krishna Hosfield, Brian D. Mesfin, Fikir M. Colgate, Cameron Shelley, William Christopher Liu, Jianyun Zeng, Lifan Brokaw, John P. Markel, Troy A. |
author_sort | Manohar, Krishna |
collection | PubMed |
description | Necrotizing enterocolitis (NEC) continues to be a devastating disease in preterm neonates and has a paucity of medical management options. Chondroitin sulfate (CS) is a naturally occurring glycosaminoglycan (GAG) in human breast milk (HM) and has been shown to reduce inflammation. We hypothesized that supplementation with CS in an experimental NEC model would alter microbial diversity, favorably alter the cytokine profile, and (like other sulfur compounds) improve outcomes in experimental NEC via the eNOS pathway. NEC was induced in 5‐day‐old pups. Six groups were studied (n = 9–15/group): (1) WT breastfed and (2) Formula fed controls, (3) WT NEC, (4) WT NEC + CS, (5) eNOS KO (knockout) NEC, and (6) eNOS KO NEC + CS. Pups were monitored for clinical sickness score and weights. On postnatal day 9, the pups were killed. Stool was collected from rectum and microbiome analysis was done with 16 s rRNA sequencing. Intestinal segments were examined histologically using a well‐established injury scoring system and segments were homogenized and analyzed for cytokine profile. Data were analyzed using GraphPad Prism with p < 0.05 considered significant. CS supplementation in formula improved experimental NEC outcomes when compared to NEC alone. CS supplementation resulted in similar improvement in NEC in both the WT and eNOS KO mice. CS supplementation did not result in microbial changes when compared to NEC alone. Our data suggest that although CS supplementation improved outcomes in NEC, this protection is not conferred via the eNOS pathway or alteration of microbial diversity. CS therapy in NEC does improve the intestinal cytokine profile and further experiments will explore the mechanistic role of CS in altering immune pathways in this disease. |
format | Online Article Text |
id | pubmed-10495347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104953472023-09-13 Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis Manohar, Krishna Hosfield, Brian D. Mesfin, Fikir M. Colgate, Cameron Shelley, William Christopher Liu, Jianyun Zeng, Lifan Brokaw, John P. Markel, Troy A. Physiol Rep Original Articles Necrotizing enterocolitis (NEC) continues to be a devastating disease in preterm neonates and has a paucity of medical management options. Chondroitin sulfate (CS) is a naturally occurring glycosaminoglycan (GAG) in human breast milk (HM) and has been shown to reduce inflammation. We hypothesized that supplementation with CS in an experimental NEC model would alter microbial diversity, favorably alter the cytokine profile, and (like other sulfur compounds) improve outcomes in experimental NEC via the eNOS pathway. NEC was induced in 5‐day‐old pups. Six groups were studied (n = 9–15/group): (1) WT breastfed and (2) Formula fed controls, (3) WT NEC, (4) WT NEC + CS, (5) eNOS KO (knockout) NEC, and (6) eNOS KO NEC + CS. Pups were monitored for clinical sickness score and weights. On postnatal day 9, the pups were killed. Stool was collected from rectum and microbiome analysis was done with 16 s rRNA sequencing. Intestinal segments were examined histologically using a well‐established injury scoring system and segments were homogenized and analyzed for cytokine profile. Data were analyzed using GraphPad Prism with p < 0.05 considered significant. CS supplementation in formula improved experimental NEC outcomes when compared to NEC alone. CS supplementation resulted in similar improvement in NEC in both the WT and eNOS KO mice. CS supplementation did not result in microbial changes when compared to NEC alone. Our data suggest that although CS supplementation improved outcomes in NEC, this protection is not conferred via the eNOS pathway or alteration of microbial diversity. CS therapy in NEC does improve the intestinal cytokine profile and further experiments will explore the mechanistic role of CS in altering immune pathways in this disease. John Wiley and Sons Inc. 2023-09-11 /pmc/articles/PMC10495347/ /pubmed/37697223 http://dx.doi.org/10.14814/phy2.15819 Text en © 2023 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Manohar, Krishna Hosfield, Brian D. Mesfin, Fikir M. Colgate, Cameron Shelley, William Christopher Liu, Jianyun Zeng, Lifan Brokaw, John P. Markel, Troy A. Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
title | Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
title_full | Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
title_fullStr | Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
title_full_unstemmed | Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
title_short | Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
title_sort | chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495347/ https://www.ncbi.nlm.nih.gov/pubmed/37697223 http://dx.doi.org/10.14814/phy2.15819 |
work_keys_str_mv | AT manoharkrishna chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT hosfieldbriand chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT mesfinfikirm chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT colgatecameron chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT shelleywilliamchristopher chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT liujianyun chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT zenglifan chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT brokawjohnp chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis AT markeltroya chondroitinsulfatesupplementationimprovesclinicaloutcomesinamurinemodelofnecrotizingenterocolitis |