Cargando…
The prediction of Chongqing's GDP based on the LASSO method and chaotic whale group algorithm–back propagation neural network–ARIMA model
Accurate GDP forecasts are vital for strategic decision-making and effective macroeconomic policies. In this study, we propose an innovative approach for Chongqing's GDP prediction, combining the LASSO method with the CWOA—BP–ARIMA model. Through meticulous feature selection based on Pearson co...
Autores principales: | Chen, Juntao, Wu, Jibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495363/ https://www.ncbi.nlm.nih.gov/pubmed/37696872 http://dx.doi.org/10.1038/s41598-023-42258-z |
Ejemplares similares
-
Research on GDP Forecast Analysis Combining BP Neural Network and ARIMA Model
por: Lu, Shaobo
Publicado: (2021) -
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
por: Mathew, Boby, et al.
Publicado: (2022) -
Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography
por: Feng, Jinchao, et al.
Publicado: (2018) -
The Whale Optimization Algorithm Approach for Deep Neural Networks
por: Brodzicki, Andrzej, et al.
Publicado: (2021) -
A modified back-propagation algorithm for training neural networks on data with error bars
por: Gernoth, K A, et al.
Publicado: (1994)