Cargando…
Material to system-level benchmarking of CMOS-integrated RRAM with ultra-fast switching for low power on-chip learning
Analog hardware-based training provides a promising solution to developing state-of-the-art power-hungry artificial intelligence models. Non-volatile memory hardware such as resistive random access memory (RRAM) has the potential to provide a low power alternative. The training accuracy of analog ha...
Autores principales: | Abedin, Minhaz, Gong, Nanbo, Beckmann, Karsten, Liehr, Maximilian, Saraf, Iqbal, Van der Straten, Oscar, Ando, Takashi, Cady, Nathaniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495451/ https://www.ncbi.nlm.nih.gov/pubmed/37697024 http://dx.doi.org/10.1038/s41598-023-42214-x |
Ejemplares similares
-
A RRAM Integrated 4T SRAM with Self-Inhibit Resistive Switching Load by Pure CMOS Logic Process
por: Hsu, Meng-Yin, et al.
Publicado: (2017) -
Sensing Circuit Design Techniques for RRAM in Advanced CMOS Technology Nodes
por: Zhang, Donglin, et al.
Publicado: (2021) -
Statistical Simulation of the Switching Mechanism in ZnO-Based RRAM Devices
por: Bature, Usman Isyaku, et al.
Publicado: (2022) -
Dynamic-Load-Enabled Ultra-low Power Multiple-State RRAM Devices
por: Yang, Xiang, et al.
Publicado: (2012) -
Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application
por: Shen, Zongjie, et al.
Publicado: (2020)