Cargando…

Metals in Callitriche cophocarpa from small rivers with various levels of pollution in SW Poland

The anthropogenic impact of metals on aquatic environments is a risk for biota, and thus their levels must be controlled. Callitriche cophocarpa Sendtn. belongs to a genus with a potential for accumulation of elevated metal levels. Thus, it may provide consolidated evidence of contamination. Therefo...

Descripción completa

Detalles Bibliográficos
Autores principales: Maksymowicz, Przemysław, Samecka-Cymerman, Aleksandra, Rajsz, Adam, Wojtuń, Bronisław, Rudecki, Andrzej, Lenarcik, Maciej, Kempers, Alexander J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495474/
https://www.ncbi.nlm.nih.gov/pubmed/37599347
http://dx.doi.org/10.1007/s11356-023-28372-5
Descripción
Sumario:The anthropogenic impact of metals on aquatic environments is a risk for biota, and thus their levels must be controlled. Callitriche cophocarpa Sendtn. belongs to a genus with a potential for accumulation of elevated metal levels. Thus, it may provide consolidated evidence of contamination. Therefore, the aim of this investigation was to determine Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in this species collected together with water and bottom sediments from rivers with various levels of pollution. Of these rivers, one less polluted and one more polluted was selected for the collection of C. cophocarpa for an experiment to compare its Cu and Zn concentration potential. Both metals were supplemented at concentrations 0.01, 0.02, 0.03, 0.05, 0.08 and 0.14 mg L(−1) of Cu as CuSO4 × 5H2O and 0.4, 0.6, 0,9, 1,35, 2.03 and 3.04 mg L(−1) of Zn as ZnSO(4) × 7H(2)O, and in the binary design containing (mg·L(−1)) 0.01Cu + 0.4Zn, 0.02Cu + 0.6Zn, 0.03Cu + 0.9Zn, 0.05Cu + 1.4Zn, 0.08Cu + 2.03 Zn and 0.14Cu + 3.04Zn. The upper concentrations of Cr, Cu, Mn and Zn in C. cophocarpa shoots from both types of rivers as well as of Ni and Pb in shoots from more polluted rivers were higher than the values typical for toxicity thresholds with no visible harmful effects, which may indicate accumulation abilities of C. cophocarpa for these metals. Both roots and shoots of C. cophocarpa may be included in the group of macroconcentrators for bottom sediments with respect to Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn and deconcentrators of Pb. Greater accumulation of most metals in roots than in shoots indicates their restricted mobility and translocation by C. cophocarpa to shoots. C. cophocarpa from the less polluted river and exposed to all experimental solutions contained significantly higher levels of Cu and Zn than that from the more polluted river exposed to identical experimental solutions. The plants collected from the more polluted river influenced by surplus of metals and living under chemical stress could probably limit further accumulation by developing a resistance mechanism. Cu and Zn contents in C. cophocarpa were higher when treated with separate metals than for binary treatment both in the more and less polluted river. Such research presenting the impact of a combination of metals could be important for understanding and explaining the interactions of these elements which may influence their bioavailability in nature as well as importance in the evaluation of the risk of environmental toxicity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11356-023-28372-5.