Cargando…
MetaTransformer: deep metagenomic sequencing read classification using self-attention models
Deep learning has emerged as a paradigm that revolutionizes numerous domains of scientific research. Transformers have been utilized in language modeling outperforming previous approaches. Therefore, the utilization of deep learning as a tool for analyzing the genomic sequences is promising, yieldin...
Autores principales: | Wichmann, Alexander, Buschong, Etienne, Müller, André, Jünger, Daniel, Hildebrandt, Andreas, Hankeln, Thomas, Schmidt, Bertil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495543/ https://www.ncbi.nlm.nih.gov/pubmed/37705831 http://dx.doi.org/10.1093/nargab/lqad082 |
Ejemplares similares
-
Accelerating metagenomic read classification on CUDA-enabled GPUs
por: Kobus, Robin, et al.
Publicado: (2017) -
RainDrop: Rapid activation matrix computation for droplet-based single-cell RNA-seq reads
por: Niebler, Stefan, et al.
Publicado: (2020) -
A big data approach to metagenomics for all-food-sequencing
por: Kobus, Robin, et al.
Publicado: (2020) -
The Nubeam reference-free approach to analyze metagenomic sequencing reads
por: Dai, Hang, et al.
Publicado: (2020) -
Minerva: an alignment- and reference-free approach to deconvolve Linked-Reads for metagenomics
por: Danko, David C., et al.
Publicado: (2019)