Cargando…
Evaluation of deep learning models for quality control of MR spectra
PURPOSE: While 3D MR spectroscopic imaging (MRSI) provides valuable spatial metabolic information, one of the hurdles for clinical translation is its interpretation, with voxel-wise quality control (QC) as an essential and the most time-consuming step. This work evaluates the accuracy of machine lea...
Autores principales: | Vaziri, Sana, Liu, Huawei, Xie, Emily, Ratiney, Hélène, Sdika, Michaël, Lupo, Janine M., Xu, Duan, Li, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495580/ https://www.ncbi.nlm.nih.gov/pubmed/37706154 http://dx.doi.org/10.3389/fnins.2023.1219343 |
Ejemplares similares
-
QC-Automator: Deep Learning-Based Automated Quality Control for Diffusion MR Images
por: Samani, Zahra Riahi, et al.
Publicado: (2020) -
Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning
por: Yang, Yang, et al.
Publicado: (2018) -
Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning
por: Lin, Jinghui, et al.
Publicado: (2021) -
Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
por: Ratiney, H., et al.
Publicado: (2007) -
Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets
por: Bento, Mariana, et al.
Publicado: (2022)