Cargando…
Modelling digital health data: The ExaMode ontology for computational pathology
Computational pathology can significantly benefit from ontologies to standardize the employed nomenclature and help with knowledge extraction processes for high-quality annotated image datasets. The end goal is to reach a shared model for digital pathology to overcome data variability and integratio...
Autores principales: | Menotti, Laura, Silvello, Gianmaria, Atzori, Manfredo, Boytcheva, Svetla, Ciompi, Francesco, Di Nunzio, Giorgio Maria, Fraggetta, Filippo, Giachelle, Fabio, Irrera, Ornella, Marchesin, Stefano, Marini, Niccolò, Müller, Henning, Primov, Todor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495665/ https://www.ncbi.nlm.nih.gov/pubmed/37705689 http://dx.doi.org/10.1016/j.jpi.2023.100332 |
Ejemplares similares
-
Empowering digital pathology applications through explainable knowledge extraction tools
por: Marchesin, Stefano, et al.
Publicado: (2022) -
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations
por: Marini, Niccolò, et al.
Publicado: (2022) -
Building a large gene expression-cancer knowledge base with limited human annotations
por: Marchesin, Stefano, et al.
Publicado: (2023) -
MedTAG: a portable and customizable annotation tool for biomedical documents
por: Giachelle, Fabio, et al.
Publicado: (2021) -
Search, access, and explore life science nanopublications on the Web
por: Giachelle, Fabio, et al.
Publicado: (2021)