Cargando…

MSCDNet-based multi-class classification of skin cancer using dermoscopy images

BACKGROUND: Skin cancer is a life-threatening disease, and early detection of skin cancer improves the chances of recovery. Skin cancer detection based on deep learning algorithms has recently grown popular. In this research, a new deep learning-based network model for the multiple skin cancer class...

Descripción completa

Detalles Bibliográficos
Autores principales: Radhika, Vankayalapati, Chandana, B. Sai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495937/
https://www.ncbi.nlm.nih.gov/pubmed/37705664
http://dx.doi.org/10.7717/peerj-cs.1520
Descripción
Sumario:BACKGROUND: Skin cancer is a life-threatening disease, and early detection of skin cancer improves the chances of recovery. Skin cancer detection based on deep learning algorithms has recently grown popular. In this research, a new deep learning-based network model for the multiple skin cancer classification including melanoma, benign keratosis, melanocytic nevi, and basal cell carcinoma is presented. We propose an automatic Multi-class Skin Cancer Detection Network (MSCD-Net) model in this research. METHODS: The study proposes an efficient semantic segmentation deep learning model “DenseUNet” for skin lesion segmentation. The semantic skin lesions are segmented by using the DenseUNet model with a substantially deeper network and fewer trainable parameters. Some of the most relevant features are selected using Binary Dragonfly Algorithm (BDA). SqueezeNet-based classification can be made in the selected features. RESULTS: The performance of the proposed model is evaluated using the ISIC 2019 dataset. The DenseNet connections and UNet links are used by the proposed DenseUNet segmentation model, which produces low-level features and provides better segmentation results. The performance results of the proposed MSCD-Net model are superior to previous research in terms of effectiveness and efficiency on the standard ISIC 2019 dataset.