Cargando…
Relation extraction in Chinese using attention-based bidirectional long short-term memory networks
Relation extraction is an important topic in information extraction, as it is used to create large-scale knowledge graphs for a variety of downstream applications. Its goal is to find and extract semantic links between entity pairs in natural language sentences. Deep learning has substantially advan...
Autor principal: | Zhang, Yanzi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495963/ https://www.ncbi.nlm.nih.gov/pubmed/37705662 http://dx.doi.org/10.7717/peerj-cs.1509 |
Ejemplares similares
-
Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
por: Farid, Ahmed Bahaa, et al.
Publicado: (2021) -
Bidirectional matching and aggregation network for few-shot relation extraction
por: Wei, Zhongcheng, et al.
Publicado: (2023) -
Research on emotion classification technology of movie reviews based on topic attention mechanism and dual channel long short term memory
por: Wang, Yufei
Publicado: (2023) -
Long-short term memory networks for modeling track geometry in laser metal deposition
por: Perani, Martina, et al.
Publicado: (2023) -
Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks
por: Chakravarti, Suman K., et al.
Publicado: (2019)