Cargando…
J-score: a robust measure of clustering accuracy
BACKGROUND: Clustering analysis discovers hidden structures in a data set by partitioning them into disjoint clusters. Robust accuracy measures that evaluate the goodness of clustering results are critical for algorithm development and model diagnosis. Common problems of clustering accuracy measures...
Autores principales: | Ahmadinejad, Navid, Chung, Yunro, Liu, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495964/ https://www.ncbi.nlm.nih.gov/pubmed/37705621 http://dx.doi.org/10.7717/peerj-cs.1545 |
Ejemplares similares
-
RobOMP: Robust variants of Orthogonal Matching Pursuit for sparse representations
por: Loza, Carlos A.
Publicado: (2019) -
Splitting ore from X-ray image based on improved robust concave-point algorithm
por: Wang, Lanhao, et al.
Publicado: (2023) -
Clustering assessment in weighted networks
por: Arratia, Argimiro, et al.
Publicado: (2021) -
Robust MPC for polytopic uncertain systems via a high-rate network with the round-robin scheduling
por: Wang, Jianhua, et al.
Publicado: (2023) -
COMICS: a community property-based triangle motif clustering scheme
por: Feng, Yufan, et al.
Publicado: (2019)