Cargando…
Deep learning-based automatic action extraction from structured chemical synthesis procedures
This article proposes a methodology that uses machine learning algorithms to extract actions from structured chemical synthesis procedures, thereby bridging the gap between chemistry and natural language processing. The proposed pipeline combines ML algorithms and scripts to extract relevant data fr...
Autores principales: | Vaškevičius, Mantas, Kapočiūtė-Dzikienė, Jurgita, Vaškevičius, Arnas, Šlepikas, Liudas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495970/ https://www.ncbi.nlm.nih.gov/pubmed/37705639 http://dx.doi.org/10.7717/peerj-cs.1511 |
Ejemplares similares
-
Prediction of Chromatography Conditions for Purification in Organic Synthesis Using Deep Learning
por: Vaškevičius, Mantas, et al.
Publicado: (2021) -
Neural network hyperparameter optimization for prediction of real estate prices in Helsinki
por: Kalliola, Jussi, et al.
Publicado: (2021) -
Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning
por: Boulent, Justine, et al.
Publicado: (2020) -
An Open-Source Deep Learning Algorithm for Efficient and Fully Automatic Analysis of the Choroid in Optical Coherence Tomography
por: Burke, Jamie, et al.
Publicado: (2023) -
Research on remote sensing image extraction based on deep learning
por: Shun, Zhao, et al.
Publicado: (2022)