Cargando…
Identifying bias in network clustering quality metrics
We study potential biases of popular network clustering quality metrics, such as those based on the dichotomy between internal and external connectivity. We propose a method that uses both stochastic and preferential attachment block models construction to generate networks with preset community str...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495975/ https://www.ncbi.nlm.nih.gov/pubmed/37705625 http://dx.doi.org/10.7717/peerj-cs.1523 |
Sumario: | We study potential biases of popular network clustering quality metrics, such as those based on the dichotomy between internal and external connectivity. We propose a method that uses both stochastic and preferential attachment block models construction to generate networks with preset community structures, and Poisson or scale-free degree distribution, to which quality metrics will be applied. These models also allow us to generate multi-level structures of varying strength, which will show if metrics favour partitions into a larger or smaller number of clusters. Additionally, we propose another quality metric, the density ratio. We observed that most of the studied metrics tend to favour partitions into a smaller number of big clusters, even when their relative internal and external connectivity are the same. The metrics found to be less biased are modularity and density ratio. |
---|