Cargando…
An experimental study on the performance of collaborative filtering based on user reviews for large-scale datasets
Collaborative filtering (CF) approaches generate user recommendations based on user similarities. These similarities are calculated based on the overall (explicit) user ratings. However, in some domains, such ratings may be sparse or unavailable. User reviews can play a significant role in such case...
Autores principales: | AL-Ghuribi, Sumaia, Mohd Noah, Shahrul Azman, Mohammed, Mawal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495999/ https://www.ncbi.nlm.nih.gov/pubmed/37705634 http://dx.doi.org/10.7717/peerj-cs.1525 |
Ejemplares similares
-
Code4ML: a large-scale dataset of annotated Machine Learning code
por: Drozdova, Anastasia, et al.
Publicado: (2023) -
A serendipity-biased Deepwalk for collaborators recommendation
por: Xu, Zhenzhen, et al.
Publicado: (2019) -
Supervised ensemble learning methods towards automatically filtering Urdu fake news within social media
por: Akhter, Muhammad Pervez, et al.
Publicado: (2021) -
Multi-label multi-class COVID-19 Arabic Twitter dataset with fine-grained misinformation and situational information annotations
por: Obeidat, Rasha, et al.
Publicado: (2022) -
Big data clustering techniques based on Spark: a literature review
por: Saeed, Mozamel M., et al.
Publicado: (2020)