Cargando…
Predicting energy use in construction using Extreme Gradient Boosting
Annual increases in global energy consumption are an unavoidable consequence of a growing global economy and population. Among different sectors, the construction industry consumes an average of 20.1% of the world’s total energy. Therefore, exploring methods for estimating the amount of energy used...
Autores principales: | Han, Jiaming, Shu, Kunxin, Wang, Zhenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496006/ https://www.ncbi.nlm.nih.gov/pubmed/37705620 http://dx.doi.org/10.7717/peerj-cs.1500 |
Ejemplares similares
-
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
por: Bakasa, Wilson, et al.
Publicado: (2023) -
Domain Adaptation Using Convolutional Autoencoder and Gradient Boosting for Adverse Events Prediction in the Intensive Care Unit
por: Zhu, Yuanda, et al.
Publicado: (2022) -
Learning with privileged and sensitive information: a gradient-boosting approach
por: Yan, Siwen, et al.
Publicado: (2023) -
Machine learning-based prediction of hospital prolonged length of stay admission at emergency department: a Gradient Boosting algorithm analysis
por: Zeleke, Addisu Jember, et al.
Publicado: (2023) -
An Attempt to Boost Posterior Population Expansion Using Fast Machine Learning Algorithms
por: Juda, Przemysław, et al.
Publicado: (2021)