Cargando…
Active learning with label quality control
Training deep neural networks requires a large number of labeled samples, which are typically provided by crowdsourced workers or professionals at a high cost. To obtain qualified labels, samples need to be relabeled for inspection to control the quality of the labels, which further increases the co...
Autores principales: | Wang, Xingyu, Chi, Xurong, Song, Yanzhi, Yang, Zhouwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496030/ https://www.ncbi.nlm.nih.gov/pubmed/37705638 http://dx.doi.org/10.7717/peerj-cs.1480 |
Ejemplares similares
-
Editorial: Deep learning with limited labeled data for vision, audio, and text
por: Orescanin, Marko, et al.
Publicado: (2023) -
Yes we care!-Certification for machine learning methods through the care label framework
por: Morik, Katharina J., et al.
Publicado: (2022) -
EnsemV3X: a novel ensembled deep learning architecture for multi-label scene classification
por: Sobti, Priyal, et al.
Publicado: (2021) -
Tuning Fairness by Balancing Target Labels
por: Kehrenberg, Thomas, et al.
Publicado: (2020) -
An improved two-stage label propagation algorithm based on LeaderRank
por: Liu, Miaomiao, et al.
Publicado: (2022)