Cargando…
Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population
BACKGROUND: Observational studies can suggest potential associations between variables but cannot establish a causal effect on their own. This study explored the causal associations between body mass index (BMI), physical activity (PA), and joint sports injuries. METHODS: We conducted two-sample Men...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496185/ https://www.ncbi.nlm.nih.gov/pubmed/37700350 http://dx.doi.org/10.1186/s13018-023-04172-y |
_version_ | 1785105054674452480 |
---|---|
author | Bi, Wen Yang, Mengyue Jiang, Changqing |
author_facet | Bi, Wen Yang, Mengyue Jiang, Changqing |
author_sort | Bi, Wen |
collection | PubMed |
description | BACKGROUND: Observational studies can suggest potential associations between variables but cannot establish a causal effect on their own. This study explored the causal associations between body mass index (BMI), physical activity (PA), and joint sports injuries. METHODS: We conducted two-sample Mendelian randomization (MR) using publicly accessed genome-wide association studies (GWAS) datasets to investigate the causal effects of BMI and PA on joint sports injury risk. The inverse-variance weighted method was believed to be the primary MR analysis. Subsequently, sensitivity, pleiotropy, and heterogeneity analyses were employed to estimate the reliability of the results of the current research. RESULTS: Genetically predicted increased BMI was causally related to the higher sports injury risk of the ankle–foot (OR 1.23, 95% CI 1.09–1.37, p = 4.20E−04), knee (OR 1.32, 95% CI 1.21–1.43, p = 1.57E−11), and shoulder (OR 1.23, 95% CI 1.08–1.40, p = 1.28E−03). Further, the mentioned effects were validated using another set of GWAS data on BMI. Similar causal linkages were exhibited between increased BMI and the growing risk of sports injuries of the ankle–foot (OR 1.34, 95% CI 1.13–1.60, p = 9.51E−04), knee (OR 1.26, 95% CI 1.09–1.45, p = 1.63E−03), and shoulder (OR 1.35, 95% CI 1.09–1.67, p = 5.66E−03). Additionally, accelerometer-based PA measurement (overall average acceleration) (AccAve) was negatively related to sports injuries of the ankle–foot (OR 0.93, 95% CI 0.87–0.99, p = 0.046) and lumbar spine (OR 0.68, 95% CI 0.51–0.92, p = 0.012). Furthermore, we verified that the effect of AccAve on the risk of injury at the ankle–foot still had statistical significance after adjusting BMI. Results were verified as reliable under all sensitive analyses. CONCLUSIONS: This research determined that a higher BMI could raise the sports injury risk of the ankle–foot, knee, and shoulder, while an overall average acceleration PA could reduce the injury risk of the ankle–foot and lumbar spine. These conclusions contribute to a greater knowledge of the roles of BMI and PA in the mechanism of joint sports injuries and offer several suggestions for patients and clinicians. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13018-023-04172-y. |
format | Online Article Text |
id | pubmed-10496185 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-104961852023-09-13 Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population Bi, Wen Yang, Mengyue Jiang, Changqing J Orthop Surg Res Research Article BACKGROUND: Observational studies can suggest potential associations between variables but cannot establish a causal effect on their own. This study explored the causal associations between body mass index (BMI), physical activity (PA), and joint sports injuries. METHODS: We conducted two-sample Mendelian randomization (MR) using publicly accessed genome-wide association studies (GWAS) datasets to investigate the causal effects of BMI and PA on joint sports injury risk. The inverse-variance weighted method was believed to be the primary MR analysis. Subsequently, sensitivity, pleiotropy, and heterogeneity analyses were employed to estimate the reliability of the results of the current research. RESULTS: Genetically predicted increased BMI was causally related to the higher sports injury risk of the ankle–foot (OR 1.23, 95% CI 1.09–1.37, p = 4.20E−04), knee (OR 1.32, 95% CI 1.21–1.43, p = 1.57E−11), and shoulder (OR 1.23, 95% CI 1.08–1.40, p = 1.28E−03). Further, the mentioned effects were validated using another set of GWAS data on BMI. Similar causal linkages were exhibited between increased BMI and the growing risk of sports injuries of the ankle–foot (OR 1.34, 95% CI 1.13–1.60, p = 9.51E−04), knee (OR 1.26, 95% CI 1.09–1.45, p = 1.63E−03), and shoulder (OR 1.35, 95% CI 1.09–1.67, p = 5.66E−03). Additionally, accelerometer-based PA measurement (overall average acceleration) (AccAve) was negatively related to sports injuries of the ankle–foot (OR 0.93, 95% CI 0.87–0.99, p = 0.046) and lumbar spine (OR 0.68, 95% CI 0.51–0.92, p = 0.012). Furthermore, we verified that the effect of AccAve on the risk of injury at the ankle–foot still had statistical significance after adjusting BMI. Results were verified as reliable under all sensitive analyses. CONCLUSIONS: This research determined that a higher BMI could raise the sports injury risk of the ankle–foot, knee, and shoulder, while an overall average acceleration PA could reduce the injury risk of the ankle–foot and lumbar spine. These conclusions contribute to a greater knowledge of the roles of BMI and PA in the mechanism of joint sports injuries and offer several suggestions for patients and clinicians. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13018-023-04172-y. BioMed Central 2023-09-12 /pmc/articles/PMC10496185/ /pubmed/37700350 http://dx.doi.org/10.1186/s13018-023-04172-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Bi, Wen Yang, Mengyue Jiang, Changqing Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population |
title | Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population |
title_full | Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population |
title_fullStr | Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population |
title_full_unstemmed | Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population |
title_short | Causal effect of body mass index and physical activity on the risk of joint sports injuries: Mendelian randomization analysis in the European population |
title_sort | causal effect of body mass index and physical activity on the risk of joint sports injuries: mendelian randomization analysis in the european population |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496185/ https://www.ncbi.nlm.nih.gov/pubmed/37700350 http://dx.doi.org/10.1186/s13018-023-04172-y |
work_keys_str_mv | AT biwen causaleffectofbodymassindexandphysicalactivityontheriskofjointsportsinjuriesmendelianrandomizationanalysisintheeuropeanpopulation AT yangmengyue causaleffectofbodymassindexandphysicalactivityontheriskofjointsportsinjuriesmendelianrandomizationanalysisintheeuropeanpopulation AT jiangchangqing causaleffectofbodymassindexandphysicalactivityontheriskofjointsportsinjuriesmendelianrandomizationanalysisintheeuropeanpopulation |