Cargando…
The association of circulating endocannabinoids with neuroimaging and blood biomarkers of neuro-injury
BACKGROUND: Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We exam...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496329/ https://www.ncbi.nlm.nih.gov/pubmed/37700370 http://dx.doi.org/10.1186/s13195-023-01301-x |
Sumario: | BACKGROUND: Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. METHODS: This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011–2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer’s disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. RESULTS: Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (β ± SE = − 0.12 ± 0.06, p = 0.034 and β ± SE = 0.08 ± 0.04, p = 0.026, respectively). CONCLUSIONS: Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer’s disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-023-01301-x. |
---|