Cargando…
COLLAGENE enables privacy-aware federated and collaborative genomic data analysis
Growing regulatory requirements set barriers around genetic data sharing and collaborations. Moreover, existing privacy-aware paradigms are challenging to deploy in collaborative settings. We present COLLAGENE, a tool base for building secure collaborative genomic data analysis methods. COLLAGENE pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496350/ https://www.ncbi.nlm.nih.gov/pubmed/37697426 http://dx.doi.org/10.1186/s13059-023-03039-z |
Sumario: | Growing regulatory requirements set barriers around genetic data sharing and collaborations. Moreover, existing privacy-aware paradigms are challenging to deploy in collaborative settings. We present COLLAGENE, a tool base for building secure collaborative genomic data analysis methods. COLLAGENE protects data using shared-key homomorphic encryption and combines encryption with multiparty strategies for efficient privacy-aware collaborative method development. COLLAGENE provides ready-to-run tools for encryption/decryption, matrix processing, and network transfers, which can be immediately integrated into existing pipelines. We demonstrate the usage of COLLAGENE by building a practical federated GWAS protocol for binary phenotypes and a secure meta-analysis protocol. COLLAGENE is available at https://zenodo.org/record/8125935. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03039-z. |
---|