Cargando…
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas
BACKGROUND: We aimed to develop machine learning models for prediction of molecular subgroups (low-risk group and intermediate/high-risk group) and molecular marker (KIAA1549-BRAF fusion) of pediatric low-grade gliomas (PLGGs) based on radiomic features extracted from multiparametric MRI. METHODS: 6...
Autores principales: | Liu, Zhen, Hong, Xuanke, Wang, Linglong, Ma, Zeyu, Guan, Fangzhan, Wang, Weiwei, Qiu, Yuning, Zhang, Xueping, Duan, Wenchao, Wang, Minkai, Sun, Chen, Zhao, Yuanshen, Duan, Jingxian, Sun, Qiuchang, Liu, Lin, Ding, Lei, Ji, Yuchen, Yan, Dongming, Liu, Xianzhi, Cheng, Jingliang, Zhang, Zhenyu, Li, Zhi-Cheng, Yan, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496393/ https://www.ncbi.nlm.nih.gov/pubmed/37697238 http://dx.doi.org/10.1186/s12885-023-11338-8 |
Ejemplares similares
-
Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
por: Wang, Zilong, et al.
Publicado: (2023) -
Biological underpinnings of radiomic magnetic resonance imaging phenotypes for risk stratification in IDH wild-type glioblastoma
por: Guan, Fangzhan, et al.
Publicado: (2023) -
Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images
por: Wang, Weiwei, et al.
Publicado: (2023) -
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma
por: Sun, Chen, et al.
Publicado: (2022) -
Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study
por: Duan, Jingxian, et al.
Publicado: (2023)