Cargando…
Machine learning models for predicting pre-eclampsia: a systematic review protocol
INTRODUCTION: Pre-eclampsia is one of the most serious clinical problems of pregnancy that contribute significantly to maternal mortality worldwide. This systematic review aims to identify and summarise the predictive factors of pre-eclampsia using machine learning models and evaluate the diagnostic...
Autores principales: | Ranjbar, Amene, Taeidi, Elham, Mehrnoush, Vahid, Roozbeh, Nasibeh, Darsareh, Fatemeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496701/ https://www.ncbi.nlm.nih.gov/pubmed/37696628 http://dx.doi.org/10.1136/bmjopen-2023-074705 |
Ejemplares similares
-
Spontaneous bladder rupture and associated factors during pregnancy:a systematic review and metanalysis protocol
por: Ranjbar, Amene, et al.
Publicado: (2022) -
Machine learning approach to predict postpartum haemorrhage: a systematic review protocol
por: Boujarzadeh, Banafsheh, et al.
Publicado: (2023) -
Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
por: Taeidi, Elham, et al.
Publicado: (2023) -
Manifestation of Spontaneous Rupture of the Urinary Bladder in Pregnancy: A Systematic Review of the Literature
por: Ranjbar, Amene, et al.
Publicado: (2023) -
Machine learning-based approach for predicting low birth weight
por: Ranjbar, Amene, et al.
Publicado: (2023)