Cargando…

First-principles investigations of metal–semiconductor MoSH@MoS(2) van der Waals heterostructures

Two-dimensional (2D) metal–semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal–semiconductor MoSH@MoS(2) heterostructure an...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Son-Tung, Nguyen, Cuong Q., Hieu, Nguyen N., Phuc, Huynh V., Nguyen, Chuong V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496895/
https://www.ncbi.nlm.nih.gov/pubmed/37705766
http://dx.doi.org/10.1039/d3na00465a
Descripción
Sumario:Two-dimensional (2D) metal–semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal–semiconductor MoSH@MoS(2) heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS(2) heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS(2) heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS(2) heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal–semiconductor MoSH@MoS(2) heterostructures with enhanced tunability and versatility.