Cargando…
Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation
Bimetallic iron-nickel (FeNi) compounds are widely studied materials for the oxygen evolution reaction (OER) owing to their high electrocatalytic performance and low cost. In this work, we produced thin films of the FeNi alloy on nickel foam (NF) by using an aerosol-assisted chemical deposition (AAC...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496914/ https://www.ncbi.nlm.nih.gov/pubmed/37705797 http://dx.doi.org/10.1039/d3na00298e |
_version_ | 1785105200017571840 |
---|---|
author | Ehsan, Muhammad Ali Khan, Abuzar Suliman, Munzir H. Javid, Mohamed |
author_facet | Ehsan, Muhammad Ali Khan, Abuzar Suliman, Munzir H. Javid, Mohamed |
author_sort | Ehsan, Muhammad Ali |
collection | PubMed |
description | Bimetallic iron-nickel (FeNi) compounds are widely studied materials for the oxygen evolution reaction (OER) owing to their high electrocatalytic performance and low cost. In this work, we produced thin films of the FeNi alloy on nickel foam (NF) by using an aerosol-assisted chemical deposition (AACVD) method and examined their OER catalytic activity. The hybrid FeNi/Ni catalysts obtained after 1 and 2 h of AACVD deposition show improved charge transfer and kinetics for the OER due to the strong interface between the FeNi alloy and Ni support. The FeNi/Ni-2h catalyst has higher catalytic activity than the FeNi/Ni-1h catalyst because of its nanoflower morphology that provides a large surface area and numerous active sites for the OER. Therefore, the FeNi/Ni-2h catalyst exhibits low overpotentials of 300 and 340 mV at 50 and 500 mA cm(−2) respectively, and excellent stability over 100 h, and ∼0% loss after 5000 cycles in 1 M KOH electrolyte. Furthermore, this catalyst has a small Tafel slope, low charge transfer resistance and high current exchange density and thus surpasses the benchmark IrO(2) catalyst. The easy, simple, and scalable AACVD method is an effective way to develop thin film electrocatalysts with high activity and stability. |
format | Online Article Text |
id | pubmed-10496914 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-104969142023-09-13 Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation Ehsan, Muhammad Ali Khan, Abuzar Suliman, Munzir H. Javid, Mohamed Nanoscale Adv Chemistry Bimetallic iron-nickel (FeNi) compounds are widely studied materials for the oxygen evolution reaction (OER) owing to their high electrocatalytic performance and low cost. In this work, we produced thin films of the FeNi alloy on nickel foam (NF) by using an aerosol-assisted chemical deposition (AACVD) method and examined their OER catalytic activity. The hybrid FeNi/Ni catalysts obtained after 1 and 2 h of AACVD deposition show improved charge transfer and kinetics for the OER due to the strong interface between the FeNi alloy and Ni support. The FeNi/Ni-2h catalyst has higher catalytic activity than the FeNi/Ni-1h catalyst because of its nanoflower morphology that provides a large surface area and numerous active sites for the OER. Therefore, the FeNi/Ni-2h catalyst exhibits low overpotentials of 300 and 340 mV at 50 and 500 mA cm(−2) respectively, and excellent stability over 100 h, and ∼0% loss after 5000 cycles in 1 M KOH electrolyte. Furthermore, this catalyst has a small Tafel slope, low charge transfer resistance and high current exchange density and thus surpasses the benchmark IrO(2) catalyst. The easy, simple, and scalable AACVD method is an effective way to develop thin film electrocatalysts with high activity and stability. RSC 2023-09-04 /pmc/articles/PMC10496914/ /pubmed/37705797 http://dx.doi.org/10.1039/d3na00298e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ehsan, Muhammad Ali Khan, Abuzar Suliman, Munzir H. Javid, Mohamed Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
title | Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
title_full | Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
title_fullStr | Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
title_full_unstemmed | Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
title_short | Facile deposition of FeNi/Ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
title_sort | facile deposition of feni/ni hybrid nanoflower electrocatalysts for effective and sustained water oxidation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496914/ https://www.ncbi.nlm.nih.gov/pubmed/37705797 http://dx.doi.org/10.1039/d3na00298e |
work_keys_str_mv | AT ehsanmuhammadali faciledepositionoffeninihybridnanoflowerelectrocatalystsforeffectiveandsustainedwateroxidation AT khanabuzar faciledepositionoffeninihybridnanoflowerelectrocatalystsforeffectiveandsustainedwateroxidation AT sulimanmunzirh faciledepositionoffeninihybridnanoflowerelectrocatalystsforeffectiveandsustainedwateroxidation AT javidmohamed faciledepositionoffeninihybridnanoflowerelectrocatalystsforeffectiveandsustainedwateroxidation |