Cargando…
Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization
Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496919/ https://www.ncbi.nlm.nih.gov/pubmed/37705784 http://dx.doi.org/10.1039/d3na00524k |
_version_ | 1785105201234968576 |
---|---|
author | Das, Anjan Yadav, Vikas Krishnamurthy, C. V. Jaiswal, Manu |
author_facet | Das, Anjan Yadav, Vikas Krishnamurthy, C. V. Jaiswal, Manu |
author_sort | Das, Anjan |
collection | PubMed |
description | Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. |
format | Online Article Text |
id | pubmed-10496919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-104969192023-09-13 Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization Das, Anjan Yadav, Vikas Krishnamurthy, C. V. Jaiswal, Manu Nanoscale Adv Chemistry Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. RSC 2023-08-17 /pmc/articles/PMC10496919/ /pubmed/37705784 http://dx.doi.org/10.1039/d3na00524k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Das, Anjan Yadav, Vikas Krishnamurthy, C. V. Jaiswal, Manu Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
title | Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
title_full | Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
title_fullStr | Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
title_full_unstemmed | Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
title_short | Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
title_sort | percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496919/ https://www.ncbi.nlm.nih.gov/pubmed/37705784 http://dx.doi.org/10.1039/d3na00524k |
work_keys_str_mv | AT dasanjan percolativeprotontransportinhexagonalboronnitridemembraneswithedgefunctionalization AT yadavvikas percolativeprotontransportinhexagonalboronnitridemembraneswithedgefunctionalization AT krishnamurthycv percolativeprotontransportinhexagonalboronnitridemembraneswithedgefunctionalization AT jaiswalmanu percolativeprotontransportinhexagonalboronnitridemembraneswithedgefunctionalization |