Cargando…

A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease

Background: Alzheimer’s Disease (AD) is an age-related progressive neurodegenerative disorder characterized by mental deterioration, memory deficit, and multiple cognitive abnormalities, with an overall prevalence of ∼2% among industrialized countries. Although a proper diagnosis is not yet availabl...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashemi, Kimia Sadat, Aliabadi, Mohadese Koohi, Mehrara, Arian, Talebi, Elham, Hemmati, Ali Akbar, Rezaeiye, Radin Dabbagh, Ghanbary, Mohammad Javad, Motealleh, Maryam, Dayeri, Behnaz, Alashti, Shayan Khalili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497115/
https://www.ncbi.nlm.nih.gov/pubmed/37705610
http://dx.doi.org/10.3389/fgene.2023.1225196
_version_ 1785105239214391296
author Hashemi, Kimia Sadat
Aliabadi, Mohadese Koohi
Mehrara, Arian
Talebi, Elham
Hemmati, Ali Akbar
Rezaeiye, Radin Dabbagh
Ghanbary, Mohammad Javad
Motealleh, Maryam
Dayeri, Behnaz
Alashti, Shayan Khalili
author_facet Hashemi, Kimia Sadat
Aliabadi, Mohadese Koohi
Mehrara, Arian
Talebi, Elham
Hemmati, Ali Akbar
Rezaeiye, Radin Dabbagh
Ghanbary, Mohammad Javad
Motealleh, Maryam
Dayeri, Behnaz
Alashti, Shayan Khalili
author_sort Hashemi, Kimia Sadat
collection PubMed
description Background: Alzheimer’s Disease (AD) is an age-related progressive neurodegenerative disorder characterized by mental deterioration, memory deficit, and multiple cognitive abnormalities, with an overall prevalence of ∼2% among industrialized countries. Although a proper diagnosis is not yet available, identification of miRNAs and mRNAs could offer valuable insights into the molecular pathways underlying AD’s prognosis. Method: This study aims to utilize microarray bioinformatic analysis to identify potential biomarkers of AD, by analyzing six microarray datasets (GSE4757, GSE5281, GSE16759, GSE28146, GSE12685, and GSE1297) of AD patients, and control groups. Furthermore, this study conducted gene ontology, pathways analysis, and protein-protein interaction network to reveal major pathways linked to probable biological events. The datasets were meta-analyzed using bioinformatics tools, to identify significant differentially expressed genes (DEGs) and hub genes and their targeted miRNAs’. Results: According to the findings, CXCR4, TGFB1, ITGB1, MYH11, and SELE genes were identified as hub genes in this study. The analysis of DEGs using GO (gene ontology) revealed that these genes were significantly enriched in actin cytoskeleton regulation, ECM-receptor interaction, and hypertrophic cardiomyopathy. Eventually, hsa-mir-122-5p, hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p, hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p, and hsa-mir-9-3p exhibited significant interactions with most of the hub genes. Conclusion: Overall, these genes can be considered as pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD.
format Online
Article
Text
id pubmed-10497115
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-104971152023-09-13 A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease Hashemi, Kimia Sadat Aliabadi, Mohadese Koohi Mehrara, Arian Talebi, Elham Hemmati, Ali Akbar Rezaeiye, Radin Dabbagh Ghanbary, Mohammad Javad Motealleh, Maryam Dayeri, Behnaz Alashti, Shayan Khalili Front Genet Genetics Background: Alzheimer’s Disease (AD) is an age-related progressive neurodegenerative disorder characterized by mental deterioration, memory deficit, and multiple cognitive abnormalities, with an overall prevalence of ∼2% among industrialized countries. Although a proper diagnosis is not yet available, identification of miRNAs and mRNAs could offer valuable insights into the molecular pathways underlying AD’s prognosis. Method: This study aims to utilize microarray bioinformatic analysis to identify potential biomarkers of AD, by analyzing six microarray datasets (GSE4757, GSE5281, GSE16759, GSE28146, GSE12685, and GSE1297) of AD patients, and control groups. Furthermore, this study conducted gene ontology, pathways analysis, and protein-protein interaction network to reveal major pathways linked to probable biological events. The datasets were meta-analyzed using bioinformatics tools, to identify significant differentially expressed genes (DEGs) and hub genes and their targeted miRNAs’. Results: According to the findings, CXCR4, TGFB1, ITGB1, MYH11, and SELE genes were identified as hub genes in this study. The analysis of DEGs using GO (gene ontology) revealed that these genes were significantly enriched in actin cytoskeleton regulation, ECM-receptor interaction, and hypertrophic cardiomyopathy. Eventually, hsa-mir-122-5p, hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p, hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p, and hsa-mir-9-3p exhibited significant interactions with most of the hub genes. Conclusion: Overall, these genes can be considered as pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD. Frontiers Media S.A. 2023-08-29 /pmc/articles/PMC10497115/ /pubmed/37705610 http://dx.doi.org/10.3389/fgene.2023.1225196 Text en Copyright © 2023 Hashemi, Aliabadi, Mehrara, Talebi, Hemmati, Rezaeiye, Ghanbary, Motealleh, Dayeri and Alashti. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Hashemi, Kimia Sadat
Aliabadi, Mohadese Koohi
Mehrara, Arian
Talebi, Elham
Hemmati, Ali Akbar
Rezaeiye, Radin Dabbagh
Ghanbary, Mohammad Javad
Motealleh, Maryam
Dayeri, Behnaz
Alashti, Shayan Khalili
A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease
title A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease
title_full A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease
title_fullStr A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease
title_full_unstemmed A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease
title_short A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer’s disease
title_sort meta-analysis of microarray datasets to identify biological regulatory networks in alzheimer’s disease
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497115/
https://www.ncbi.nlm.nih.gov/pubmed/37705610
http://dx.doi.org/10.3389/fgene.2023.1225196
work_keys_str_mv AT hashemikimiasadat ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT aliabadimohadesekoohi ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT mehraraarian ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT talebielham ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT hemmatialiakbar ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT rezaeiyeradindabbagh ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT ghanbarymohammadjavad ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT moteallehmaryam ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT dayeribehnaz ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT alashtishayankhalili ametaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT hashemikimiasadat metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT aliabadimohadesekoohi metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT mehraraarian metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT talebielham metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT hemmatialiakbar metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT rezaeiyeradindabbagh metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT ghanbarymohammadjavad metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT moteallehmaryam metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT dayeribehnaz metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease
AT alashtishayankhalili metaanalysisofmicroarraydatasetstoidentifybiologicalregulatorynetworksinalzheimersdisease