Cargando…
Curated single cell multimodal landmark datasets for R/Bioconductor
BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497156/ https://www.ncbi.nlm.nih.gov/pubmed/37624866 http://dx.doi.org/10.1371/journal.pcbi.1011324 |
_version_ | 1785105248990265344 |
---|---|
author | Eckenrode, Kelly B. Righelli, Dario Ramos, Marcel Argelaguet, Ricard Vanderaa, Christophe Geistlinger, Ludwig Culhane, Aedin C. Gatto, Laurent Carey, Vincent Morgan, Martin Risso, Davide Waldron, Levi |
author_facet | Eckenrode, Kelly B. Righelli, Dario Ramos, Marcel Argelaguet, Ricard Vanderaa, Christophe Geistlinger, Ludwig Culhane, Aedin C. Gatto, Laurent Carey, Vincent Morgan, Martin Risso, Davide Waldron, Levi |
author_sort | Eckenrode, Kelly B. |
collection | PubMed |
description | BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor’s Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease. |
format | Online Article Text |
id | pubmed-10497156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104971562023-09-13 Curated single cell multimodal landmark datasets for R/Bioconductor Eckenrode, Kelly B. Righelli, Dario Ramos, Marcel Argelaguet, Ricard Vanderaa, Christophe Geistlinger, Ludwig Culhane, Aedin C. Gatto, Laurent Carey, Vincent Morgan, Martin Risso, Davide Waldron, Levi PLoS Comput Biol Research Article BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor’s Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease. Public Library of Science 2023-08-25 /pmc/articles/PMC10497156/ /pubmed/37624866 http://dx.doi.org/10.1371/journal.pcbi.1011324 Text en © 2023 Eckenrode et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Eckenrode, Kelly B. Righelli, Dario Ramos, Marcel Argelaguet, Ricard Vanderaa, Christophe Geistlinger, Ludwig Culhane, Aedin C. Gatto, Laurent Carey, Vincent Morgan, Martin Risso, Davide Waldron, Levi Curated single cell multimodal landmark datasets for R/Bioconductor |
title | Curated single cell multimodal landmark datasets for R/Bioconductor |
title_full | Curated single cell multimodal landmark datasets for R/Bioconductor |
title_fullStr | Curated single cell multimodal landmark datasets for R/Bioconductor |
title_full_unstemmed | Curated single cell multimodal landmark datasets for R/Bioconductor |
title_short | Curated single cell multimodal landmark datasets for R/Bioconductor |
title_sort | curated single cell multimodal landmark datasets for r/bioconductor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497156/ https://www.ncbi.nlm.nih.gov/pubmed/37624866 http://dx.doi.org/10.1371/journal.pcbi.1011324 |
work_keys_str_mv | AT eckenrodekellyb curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT righellidario curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT ramosmarcel curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT argelaguetricard curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT vanderaachristophe curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT geistlingerludwig curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT culhaneaedinc curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT gattolaurent curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT careyvincent curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT morganmartin curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT rissodavide curatedsinglecellmultimodallandmarkdatasetsforrbioconductor AT waldronlevi curatedsinglecellmultimodallandmarkdatasetsforrbioconductor |