Cargando…

Curated single cell multimodal landmark datasets for R/Bioconductor

BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical a...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckenrode, Kelly B., Righelli, Dario, Ramos, Marcel, Argelaguet, Ricard, Vanderaa, Christophe, Geistlinger, Ludwig, Culhane, Aedin C., Gatto, Laurent, Carey, Vincent, Morgan, Martin, Risso, Davide, Waldron, Levi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497156/
https://www.ncbi.nlm.nih.gov/pubmed/37624866
http://dx.doi.org/10.1371/journal.pcbi.1011324
_version_ 1785105248990265344
author Eckenrode, Kelly B.
Righelli, Dario
Ramos, Marcel
Argelaguet, Ricard
Vanderaa, Christophe
Geistlinger, Ludwig
Culhane, Aedin C.
Gatto, Laurent
Carey, Vincent
Morgan, Martin
Risso, Davide
Waldron, Levi
author_facet Eckenrode, Kelly B.
Righelli, Dario
Ramos, Marcel
Argelaguet, Ricard
Vanderaa, Christophe
Geistlinger, Ludwig
Culhane, Aedin C.
Gatto, Laurent
Carey, Vincent
Morgan, Martin
Risso, Davide
Waldron, Levi
author_sort Eckenrode, Kelly B.
collection PubMed
description BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor’s Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease.
format Online
Article
Text
id pubmed-10497156
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-104971562023-09-13 Curated single cell multimodal landmark datasets for R/Bioconductor Eckenrode, Kelly B. Righelli, Dario Ramos, Marcel Argelaguet, Ricard Vanderaa, Christophe Geistlinger, Ludwig Culhane, Aedin C. Gatto, Laurent Carey, Vincent Morgan, Martin Risso, Davide Waldron, Levi PLoS Comput Biol Research Article BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor’s Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease. Public Library of Science 2023-08-25 /pmc/articles/PMC10497156/ /pubmed/37624866 http://dx.doi.org/10.1371/journal.pcbi.1011324 Text en © 2023 Eckenrode et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Eckenrode, Kelly B.
Righelli, Dario
Ramos, Marcel
Argelaguet, Ricard
Vanderaa, Christophe
Geistlinger, Ludwig
Culhane, Aedin C.
Gatto, Laurent
Carey, Vincent
Morgan, Martin
Risso, Davide
Waldron, Levi
Curated single cell multimodal landmark datasets for R/Bioconductor
title Curated single cell multimodal landmark datasets for R/Bioconductor
title_full Curated single cell multimodal landmark datasets for R/Bioconductor
title_fullStr Curated single cell multimodal landmark datasets for R/Bioconductor
title_full_unstemmed Curated single cell multimodal landmark datasets for R/Bioconductor
title_short Curated single cell multimodal landmark datasets for R/Bioconductor
title_sort curated single cell multimodal landmark datasets for r/bioconductor
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497156/
https://www.ncbi.nlm.nih.gov/pubmed/37624866
http://dx.doi.org/10.1371/journal.pcbi.1011324
work_keys_str_mv AT eckenrodekellyb curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT righellidario curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT ramosmarcel curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT argelaguetricard curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT vanderaachristophe curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT geistlingerludwig curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT culhaneaedinc curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT gattolaurent curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT careyvincent curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT morganmartin curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT rissodavide curatedsinglecellmultimodallandmarkdatasetsforrbioconductor
AT waldronlevi curatedsinglecellmultimodallandmarkdatasetsforrbioconductor