Cargando…
Disentangling Abstraction from Statistical Pattern Matching in Human and Machine Learning
The ability to acquire abstract knowledge is a hallmark of human intelligence and is believed by many to be one of the core differences between humans and neural network models. Agents can be endowed with an inductive bias towards abstraction through meta-learning, where they are trained on a distri...
Autores principales: | Kumar, Sreejan, Dasgupta, Ishita, Daw, Nathaniel D., Cohen, Jonathan. D., Griffiths, Thomas L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497163/ https://www.ncbi.nlm.nih.gov/pubmed/37624841 http://dx.doi.org/10.1371/journal.pcbi.1011316 |
Ejemplares similares
-
Disentangling Jenny’s equation by machine learning
por: Prieto-Castrillo, F., et al.
Publicado: (2023) -
Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics
por: DasGupta, Anirban
Publicado: (2011) -
Application of statistical machine learning in biomarker selection
por: Vashistha, Ritwik, et al.
Publicado: (2023) -
Are the Products of Statistical Learning Abstract or Stimulus-Specific?
por: Vouloumanos, Athena, et al.
Publicado: (2012) -
Statistical Learning Is Constrained to Less Abstract Patterns in Complex Sensory Input (but not the Least)
por: Emberson, Lauren L., et al.
Publicado: (2016)