Cargando…
Author Correction: Screening adequacy of unstained thyroid fine needle aspiration samples using a deep learning-based classifier
Autores principales: | Jang, Junbong, Kim, Young H., Westgate, Brian, Zong, Yang, Hallinan, Caleb, Akalin, Ali, Lee, Kwonmoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497560/ https://www.ncbi.nlm.nih.gov/pubmed/37699955 http://dx.doi.org/10.1038/s41598-023-42267-y |
Ejemplares similares
-
Screening adequacy of unstained thyroid fine needle aspiration samples using a deep learning-based classifier
por: Jang, Junbong, et al.
Publicado: (2023) -
Detection of parasite by fine-needle aspiration cytology on unstained smear
por: Rani, Deepa, et al.
Publicado: (2021) -
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
por: Jang, Junbong, et al.
Publicado: (2022) -
Fine needle aspiration of hematolymphoid lesions of the thyroid: Onsite adequacy and ancillary testing
por: Abada, Evi, et al.
Publicado: (2022) -
Diagnostic Accuracy of Ultrasonography in Classifying Thyroid Nodules Compared with Fine-Needle Aspiration
por: Al-Ghanimi, Ibrahim Abobaker, et al.
Publicado: (2020)