Cargando…
The speed of invasion in an advancing population
We derive rigorous estimates on the speed of invasion of an advantageous trait in a spatially advancing population in the context of a system of one-dimensional F-KPP equations. The model was introduced and studied heuristically and numerically in a paper by Venegas-Ortiz et al. (Genetics 196:497–50...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497670/ https://www.ncbi.nlm.nih.gov/pubmed/37700017 http://dx.doi.org/10.1007/s00285-023-01989-3 |
Sumario: | We derive rigorous estimates on the speed of invasion of an advantageous trait in a spatially advancing population in the context of a system of one-dimensional F-KPP equations. The model was introduced and studied heuristically and numerically in a paper by Venegas-Ortiz et al. (Genetics 196:497–507, 2014). In that paper, it was noted that the speed of invasion by the mutant trait is faster when the resident population is expanding in space compared to the speed when the resident population is already present everywhere. We use the Feynman–Kac representation to provide rigorous estimates that confirm these predictions. |
---|