Cargando…

The speed of invasion in an advancing population

We derive rigorous estimates on the speed of invasion of an advantageous trait in a spatially advancing population in the context of a system of one-dimensional F-KPP equations. The model was introduced and studied heuristically and numerically in a paper by Venegas-Ortiz et al. (Genetics 196:497–50...

Descripción completa

Detalles Bibliográficos
Autores principales: Bovier, Anton, Hartung, Lisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497670/
https://www.ncbi.nlm.nih.gov/pubmed/37700017
http://dx.doi.org/10.1007/s00285-023-01989-3
Descripción
Sumario:We derive rigorous estimates on the speed of invasion of an advantageous trait in a spatially advancing population in the context of a system of one-dimensional F-KPP equations. The model was introduced and studied heuristically and numerically in a paper by Venegas-Ortiz et al. (Genetics 196:497–507, 2014). In that paper, it was noted that the speed of invasion by the mutant trait is faster when the resident population is expanding in space compared to the speed when the resident population is already present everywhere. We use the Feynman–Kac representation to provide rigorous estimates that confirm these predictions.