Cargando…
A quantum chemical interaction energy dataset for accurately modeling protein-ligand interactions
Fast and accurate calculation of intermolecular interaction energies is desirable for understanding many chemical and biological processes, including the binding of small molecules to proteins. The Splinter [“Symmetry-adapted perturbation theory (SAPT0) protein-ligand interaction”] dataset has been...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497680/ https://www.ncbi.nlm.nih.gov/pubmed/37699937 http://dx.doi.org/10.1038/s41597-023-02443-1 |
Sumario: | Fast and accurate calculation of intermolecular interaction energies is desirable for understanding many chemical and biological processes, including the binding of small molecules to proteins. The Splinter [“Symmetry-adapted perturbation theory (SAPT0) protein-ligand interaction”] dataset has been created to facilitate the development and improvement of methods for performing such calculations. Molecular fragments representing commonly found substructures in proteins and small-molecule ligands were paired into >9000 unique dimers, assembled into numerous configurations using an approach designed to adequately cover the breadth of the dimers’ potential energy surfaces while enhancing sampling in favorable regions. ~1.5 million configurations of these dimers were randomly generated, and a structurally diverse subset of these were minimized to obtain an additional ~80 thousand local and global minima. For all >1.6 million configurations, SAPT0 calculations were performed with two basis sets to complete the dataset. It is expected that Splinter will be a useful benchmark dataset for training and testing various methods for the calculation of intermolecular interaction energies. |
---|