Cargando…
Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis
Autism spectrum disorders (ASD) are a complex sequelae of neurodevelopmental disorders which manifest in the form of communication and social deficits. Currently, only two agents, namely risperidone and aripiprazole have been approved for the treatment of ASD, and there is a dearth of more drugs for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497788/ https://www.ncbi.nlm.nih.gov/pubmed/37711998 http://dx.doi.org/10.1016/j.ibneur.2023.08.2191 |
_version_ | 1785105378066825216 |
---|---|
author | Bhandari, Ranjana Varma, Manasi Rana, Priyanka Dhingra, Neelima Kuhad, Anurag |
author_facet | Bhandari, Ranjana Varma, Manasi Rana, Priyanka Dhingra, Neelima Kuhad, Anurag |
author_sort | Bhandari, Ranjana |
collection | PubMed |
description | Autism spectrum disorders (ASD) are a complex sequelae of neurodevelopmental disorders which manifest in the form of communication and social deficits. Currently, only two agents, namely risperidone and aripiprazole have been approved for the treatment of ASD, and there is a dearth of more drugs for the disorder. The exact pathophysiology of autism is not understood clearly, but research has implicated multiple pathways at different points in the neuronal circuitry, suggesting their role in ASD. Among these, the role played by neuroinflammatory cascades like the NF-KB and Nrf2 pathways, and the excitotoxic glutamatergic system, are said to have a bearing on the development of ASD. Similarly, the GPR40 receptor, present in both the gut and the blood brain barrier, has also been said to be involved in the disorder. Consequently, molecules which can act by interacting with one or multiple of these targets might have a potential in the therapy of the disorder, and for this reason, this study was designed to assess the binding affinity of taurine, a naturally-occurring amino acid, with these target molecules. The same was scored against these targets using in-silico docking studies, with Risperidone and Aripiprazole being used as standard comparators. Encouraging docking scores were obtained for taurine across all the selected targets, indicating promising target interaction. But the affinity for targets actually varied in the order NRF-KEAP > NF-κB > NMDA > Calcium channel > GPR 40. Given the potential implication of these targets in the pathogenesis of ASD, the drug might show promising results in the therapy of the disorder if subjected to further evaluations. |
format | Online Article Text |
id | pubmed-10497788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104977882023-09-14 Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis Bhandari, Ranjana Varma, Manasi Rana, Priyanka Dhingra, Neelima Kuhad, Anurag IBRO Neurosci Rep Research Paper Autism spectrum disorders (ASD) are a complex sequelae of neurodevelopmental disorders which manifest in the form of communication and social deficits. Currently, only two agents, namely risperidone and aripiprazole have been approved for the treatment of ASD, and there is a dearth of more drugs for the disorder. The exact pathophysiology of autism is not understood clearly, but research has implicated multiple pathways at different points in the neuronal circuitry, suggesting their role in ASD. Among these, the role played by neuroinflammatory cascades like the NF-KB and Nrf2 pathways, and the excitotoxic glutamatergic system, are said to have a bearing on the development of ASD. Similarly, the GPR40 receptor, present in both the gut and the blood brain barrier, has also been said to be involved in the disorder. Consequently, molecules which can act by interacting with one or multiple of these targets might have a potential in the therapy of the disorder, and for this reason, this study was designed to assess the binding affinity of taurine, a naturally-occurring amino acid, with these target molecules. The same was scored against these targets using in-silico docking studies, with Risperidone and Aripiprazole being used as standard comparators. Encouraging docking scores were obtained for taurine across all the selected targets, indicating promising target interaction. But the affinity for targets actually varied in the order NRF-KEAP > NF-κB > NMDA > Calcium channel > GPR 40. Given the potential implication of these targets in the pathogenesis of ASD, the drug might show promising results in the therapy of the disorder if subjected to further evaluations. Elsevier 2023-09-02 /pmc/articles/PMC10497788/ /pubmed/37711998 http://dx.doi.org/10.1016/j.ibneur.2023.08.2191 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Bhandari, Ranjana Varma, Manasi Rana, Priyanka Dhingra, Neelima Kuhad, Anurag Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis |
title | Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis |
title_full | Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis |
title_fullStr | Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis |
title_full_unstemmed | Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis |
title_short | Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis |
title_sort | taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (asd): an in-silico analysis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497788/ https://www.ncbi.nlm.nih.gov/pubmed/37711998 http://dx.doi.org/10.1016/j.ibneur.2023.08.2191 |
work_keys_str_mv | AT bhandariranjana taurineasapotentialtherapeuticagentinteractingwithmultiplesignalingpathwaysimplicatedinautismspectrumdisorderasdaninsilicoanalysis AT varmamanasi taurineasapotentialtherapeuticagentinteractingwithmultiplesignalingpathwaysimplicatedinautismspectrumdisorderasdaninsilicoanalysis AT ranapriyanka taurineasapotentialtherapeuticagentinteractingwithmultiplesignalingpathwaysimplicatedinautismspectrumdisorderasdaninsilicoanalysis AT dhingraneelima taurineasapotentialtherapeuticagentinteractingwithmultiplesignalingpathwaysimplicatedinautismspectrumdisorderasdaninsilicoanalysis AT kuhadanurag taurineasapotentialtherapeuticagentinteractingwithmultiplesignalingpathwaysimplicatedinautismspectrumdisorderasdaninsilicoanalysis |