Cargando…
Capturing asymmetry in COVID-19 counts using an improved skewness measure for time series data
Capturing asymmetry among time series is an important area of research as it provides a range of information regarding the behaviour and distribution of the underlying series, which in turn proves to be useful for prediction. Classically, this can be achieved by modeling the skewness of the underlyi...
Autor principal: | Bapat, Sudeep R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497792/ https://www.ncbi.nlm.nih.gov/pubmed/37711140 http://dx.doi.org/10.1016/j.mex.2023.102353 |
Ejemplares similares
-
An improved framework to predict river flow time series data
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
A method for parameter hypothesis testing in nonparametric regression with Fourier series approach
por: Ramli, Mustain, et al.
Publicado: (2023) -
Simultaneous confidence intervals for all pairwise differences between the coefficients of variation of rainfall series in Thailand
por: Yosboonruang, Noppadon, et al.
Publicado: (2021) -
Excess Mortality From Suicide During the Early COVID-19 Pandemic Period in Japan: A Time-Series Modeling Before the Pandemic
por: Anzai, Tatsuhiko, et al.
Publicado: (2021)