Cargando…
Discovering associations between radiological features and COVID‐19 patients' deterioration
BACKGROUND AND AIMS: Data mining methods are effective and well‐known tools for developing predictive models and extracting useful information from various data of patients. The present study aimed to predict the severity of patients with COVID‐19 by applying the rule mining method using characteris...
Autores principales: | Ahmadinejad, Nasrin, Ayyoubzadeh, Seyed Mohammad, Zeinalkhani, Fahimeh, Delazar, Sina, Javanmard, Zohreh, Ahmadinejad, Zahra, Mohajeri, Amirhassan, Esmaeili, Marzieh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497911/ https://www.ncbi.nlm.nih.gov/pubmed/37711676 http://dx.doi.org/10.1002/hsr2.1257 |
Ejemplares similares
-
Our experience using synthesized mammography vs full field digital mammography in population-based screening
por: Ahmadinejad, Nasrin, et al.
Publicado: (2023) -
Does MRI have added value in ultrasound-detected BIRADS-3 breast masses in candidates for assisted reproductive therapy?
por: Arian, Arvin, et al.
Publicado: (2022) -
The comparison of clinical, laboratory, and radiological findings in immunocompromised and immunocompetent patients with COVID‐19: A case‐control study
por: Abasian, Ladan, et al.
Publicado: (2023) -
Prediction of Breast Cancer using Machine Learning Approaches
por: Rabiei, Reza, et al.
Publicado: (2022) -
Effects of nurses’ practice of a sedation protocol on sedation and consciousness levels of patients on mechanical ventilation
por: Abdar, Mohammad Esmaeili, et al.
Publicado: (2013)