Cargando…
Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach
Random forests (RFs) are a widely used modelling tool capable of feature selection via a variable importance measure (VIM), however, a threshold is needed to control for false positives. In the absence of a good understanding of the characteristics of VIMs, many current approaches attempt to select...
Autores principales: | Dunne, Robert, Reguant, Roc, Ramarao-Milne, Priya, Szul, Piotr, Sng, Letitia M.F., Lundberg, Mischa, Twine, Natalie A., Bauer, Denis C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497997/ https://www.ncbi.nlm.nih.gov/pubmed/37711185 http://dx.doi.org/10.1016/j.csbj.2023.08.033 |
Ejemplares similares
-
Novel Alzheimer’s disease genes and epistasis identified using machine learning GWAS platform
por: Lundberg, Mischa, et al.
Publicado: (2023) -
GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
por: Jiang, Lan, et al.
Publicado: (2016) -
Data-driven platform for identifying variants of interest in COVID-19 virus
por: Ramarao-Milne, Priya, et al.
Publicado: (2022) -
Validation and extension of an empirical Bayes method for SNP calling on Affymetrix microarrays
por: Lin, Shin, et al.
Publicado: (2008) -
GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection
por: Tsoucas, Daphne, et al.
Publicado: (2018)