Cargando…
Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials
BACKGROUND: Whether there is a subset of patients with heart failure with preserved ejection fraction (HFpEF) that benefit from spironolactone therapy is unclear. We applied a machine learning approach to identify responders and non-responders to spironolactone among patients with HFpEF in two large...
Autores principales: | Kresoja, Karl-Patrik, Unterhuber, Matthias, Wachter, Rolf, Rommel, Karl-Philipp, Besler, Christian, Shah, Sanjiv, Thiele, Holger, Edelmann, Frank, Lurz, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498181/ https://www.ncbi.nlm.nih.gov/pubmed/37689023 http://dx.doi.org/10.1016/j.ebiom.2023.104795 |
Ejemplares similares
-
Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram
por: Unterhuber, Matthias, et al.
Publicado: (2021) -
A cardiologist’s guide to machine learning in cardiovascular disease prognosis prediction
por: Kresoja, Karl-Patrik, et al.
Publicado: (2023) -
Evaluation of phosphodiesterase 9A as a novel biomarker in heart failure with preserved ejection fraction
por: Besler, Christian, et al.
Publicado: (2021) -
Sympathomodulation in Heart Failure with High vs. Normal Ejection Fraction
por: Fengler, Karl, et al.
Publicado: (2022) -
Transcriptomic Research in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives
por: Rosch, Sebastian, et al.
Publicado: (2020)